A Note on Dominating Pair Degree Condition for Hamiltonian Cycles in Balanced Bipartite Digraphs
Let D be a strong balanced bipartite digraph on 2 a vertices. For x , y , z ∈ V ( D ) , if x → z and y → z , then we call the pair { x , y } dominating; if z → x and z → y , then we call the pair { x , y } dominated. In 2017, Adamus [Graphs and Combinatorics, 33(2017) 43–51] proved that if d ( x ) +...
Uložené v:
| Vydané v: | Graphs and combinatorics Ročník 38; číslo 1 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Springer Japan
01.02.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0911-0119, 1435-5914 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Let
D
be a strong balanced bipartite digraph on 2
a
vertices. For
x
,
y
,
z
∈
V
(
D
)
, if
x
→
z
and
y
→
z
, then we call the pair
{
x
,
y
}
dominating; if
z
→
x
and
z
→
y
, then we call the pair
{
x
,
y
}
dominated. In 2017, Adamus [Graphs and Combinatorics, 33(2017) 43–51] proved that if
d
(
x
)
+
d
(
y
)
≥
3
a
whenever
{
x
,
y
}
is a dominating or dominated pair, then
D
is Hamiltonian. In 2021, Adamus [Discrete Mathematics, 344(3) (2021) 112240] proved that if only every dominating pair of vertices
{
x
,
y
}
in
D
satisfies
d
(
x
)
+
d
(
y
)
≥
3
a
+
1
, then
D
is Hamiltonian. In this paper, we show that the same conclusion is reached if we replace
3
a
+
1
with 3
a
in the above condition. The lower bound for 3
a
is sharp. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0911-0119 1435-5914 |
| DOI: | 10.1007/s00373-021-02404-8 |