ASR-Fed: agnostic straggler-resilient semi-asynchronous federated learning technique for secured drone network

Federated Learning (FL) has emerged as a transformative artificial intelligence paradigm, facilitating knowledge sharing among distributed edge devices while upholding data privacy. However, dynamic networks and resource-constrained devices such as drones, face challenges like power outages and netw...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of machine learning and cybernetics Ročník 15; číslo 11; s. 5303 - 5319
Hlavní autoři: Ihekoronye, Vivian Ukamaka, Nwakanma, Cosmas Ifeanyi, Kim, Dong-Seong, Lee, Jae Min
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Témata:
ISSN:1868-8071, 1868-808X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Federated Learning (FL) has emerged as a transformative artificial intelligence paradigm, facilitating knowledge sharing among distributed edge devices while upholding data privacy. However, dynamic networks and resource-constrained devices such as drones, face challenges like power outages and network contingencies, leading to the straggler effect that impedes the global model performance. To address this, we present ASR-Fed, a novel agnostic straggler-resilient semi-asynchronous FL aggregating algorithm. ASR-Fed incorporates a selection function to dynamically utilize updates from high-performing and active clients, while circumventing contributions from straggling clients during future aggregations. We evaluate the effectiveness of ASR-Fed using two prominent cyber-security datasets, WSN-DS, and Edge-IIoTset, and perform simulations with different deep learning models across formulated unreliable network scenarios. The simulation results demonstrate ASR-Fed’s effectiveness in achieving optimal accuracy while significantly reducing communication costs when compared with other FL aggregating protocols.
AbstractList Federated Learning (FL) has emerged as a transformative artificial intelligence paradigm, facilitating knowledge sharing among distributed edge devices while upholding data privacy. However, dynamic networks and resource-constrained devices such as drones, face challenges like power outages and network contingencies, leading to the straggler effect that impedes the global model performance. To address this, we present ASR-Fed, a novel agnostic straggler-resilient semi-asynchronous FL aggregating algorithm. ASR-Fed incorporates a selection function to dynamically utilize updates from high-performing and active clients, while circumventing contributions from straggling clients during future aggregations. We evaluate the effectiveness of ASR-Fed using two prominent cyber-security datasets, WSN-DS, and Edge-IIoTset, and perform simulations with different deep learning models across formulated unreliable network scenarios. The simulation results demonstrate ASR-Fed’s effectiveness in achieving optimal accuracy while significantly reducing communication costs when compared with other FL aggregating protocols.
Author Ihekoronye, Vivian Ukamaka
Nwakanma, Cosmas Ifeanyi
Kim, Dong-Seong
Lee, Jae Min
Author_xml – sequence: 1
  givenname: Vivian Ukamaka
  surname: Ihekoronye
  fullname: Ihekoronye, Vivian Ukamaka
  organization: IT-Convergence Engineering, Kumoh National Institute of Technology
– sequence: 2
  givenname: Cosmas Ifeanyi
  surname: Nwakanma
  fullname: Nwakanma, Cosmas Ifeanyi
  organization: IT-Convergence Engineering, Kumoh National Institute of Technology
– sequence: 3
  givenname: Dong-Seong
  orcidid: 0000-0002-2977-5964
  surname: Kim
  fullname: Kim, Dong-Seong
  organization: IT-Convergence Engineering, Kumoh National Institute of Technology
– sequence: 4
  givenname: Jae Min
  surname: Lee
  fullname: Lee, Jae Min
  email: ljmpaul@kumoh.ac.kr
  organization: IT-Convergence Engineering, Kumoh National Institute of Technology
BookMark eNp9kFtLxDAQhYOs4PUP-FTwOZpkapv6tiyuCoLgBXwL2XZSozVZkxTZf290RcGHDQwJzPlmTs4emTjvkJAjzk44Y_Vp5MBKQZkocwmQtNkiu1xWkkomnya_75rvkMMYX1g-FQNgYpe46f0dnWN3Xuje-ZhsW8QUdN8PGGjAaAeLLhUR3yzVceXa5-CdH2NhsMOgE3bFgDo46_oiYfvs7PuIhfEhI-0YcrvLABYO04cPrwdk2-gh4uHPvU8e5xcPsyt6c3t5PZve0BZ4k2htNCu10MB1_lXTauRCdKU0BlDLpoRK8q5pEBbCdADiDGoOcAamWZSmWyxgnxyv5y6Dz4ZiUi9-DC6vVMB5WTHOKplVcq1qg48xoFGtTTpZ73IEdlCcqa-A1Tpgla2o74BVk1HxD10G-6bDajMEayhmsesx_LnaQH0CQNmRIQ
CitedBy_id crossref_primary_10_1109_JIOT_2024_3519633
Cites_doi 10.1016/j.cose.2021.102344
10.1155/2021/9361348
10.1109/LCOMM.2022.3140273
10.3390/drones6020046
10.1109/JSAC.2021.3118435
10.1109/ACCESS.2023.3247512
10.1155/2021/5844728
10.1109/JIOT.2022.3200121
10.1109/JSYST.2023.3236995
10.1016/j.iot.2022.100657
10.1109/TPDS.2023.3237752
10.1155/2016/4731953
10.1109/JSAIT.2022.3205475
10.3390/drones6110342
10.3390/app10082864
10.1109/MSP.2020.2975749
10.1109/TNNLS.2019.2953131
10.1109/TVT.2022.3220809
10.1109/TPAMI.2022.3196503
10.1109/TC.2020.2994391
10.1109/ICTC55196.2022.9952400
10.48550/arXiv.2007.14390
10.1109/CSCWD54268.2022.9776061
10.1109/IPDPS53621.2022.00100
10.1109/SECONWorkshops56311.2022.9926402
10.21227/mbc1-1h68
10.1109/ICPADS51040.2020.00030
10.1109/ICCCI50826.2021.9457024
10.1145/3560905.3568538
10.1109/MILCOM55135.2022.10017532
10.1109/SYNCHROINFO51390.2021.9488416
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-024-02238-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 5319
ExternalDocumentID 10_1007_s13042_024_02238_9
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-7fa04a2a31a0249cae122d48ff3ea8943681d99e3b2fd33253713353f9b4fdbb3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271168400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-8071
IngestDate Wed Nov 05 07:53:26 EST 2025
Sat Nov 29 05:59:45 EST 2025
Tue Nov 18 21:47:03 EST 2025
Fri Feb 21 02:37:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Semi-asynchronous technique
Cybersecurity
Federated learning
Straggler effect
Intrusion detection
Drone security networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7fa04a2a31a0249cae122d48ff3ea8943681d99e3b2fd33253713353f9b4fdbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2977-5964
PQID 3114601068
PQPubID 2043904
PageCount 17
ParticipantIDs proquest_journals_3114601068
crossref_citationtrail_10_1007_s13042_024_02238_9
crossref_primary_10_1007_s13042_024_02238_9
springer_journals_10_1007_s13042_024_02238_9
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sun, Li, Wang (CR12) 2023; 45
Ma, Xu, Xu, Jiang, Huang, Huang (CR20) 2021; 39
Wu, He, Lin, Mao, Maple, Jarvis (CR7) 2021; 70
CR15
Tian, Chen, Yu, Liao (CR21) 2021; 108
CR13
CR33
Kou, Ding, Wu, Dong, Yin (CR26) 2022; 6
CR32
CR30
Putra, Putri, Zainudin, Kim, Lee (CR4) 2023; 21
Zhu, Kuang, Yang, Qian (CR11) 2023; 03
Vaisocherova, Almomani, Al-Kasasbeh, Al-Akhras (CR31) 2016
Liu, Guo, Liu, Yin (CR10) 2023; 11
CR6
CR8
Zhang, Liu, Duan, Li, Chen, Ren (CR16) 2023; 34
He, Chen, Tang, Wang, Liu (CR17) 2023; 10
CR28
CR27
CR25
Reisizadeh, Tziotis, Hassani, Mokhtari, Pedarsani (CR5) 2022; 3
CR24
Cheng, Lu, Niyato, Lyu, Kang, Zhu (CR3) 2022; 26
CR23
CR22
Yuan, Agrawal, Chowdhuri, Sarkar, Selvanambi, Gadekallu (CR14) 2021
Jiang, Man, Zeng, Yang, Yu, Lv (CR19) 2021; 2021
Li, Tong, Liu, Cheng (CR18) 2023; 2
Ajakwe, Ihekoronye, Kim, Lee (CR1) 2022; 6
Li, Sahu, Talwalkar, Smith (CR2) 2020; 37
Asad, Moustafa, Ito (CR29) 2020; 10
Chen, Sun, Jin (CR9) 2020; 31
H Zhu (2238_CR11) 2023; 03
A Reisizadeh (2238_CR5) 2022; 3
Q Yuan (2238_CR14) 2021
2238_CR30
2238_CR32
Y Chen (2238_CR9) 2020; 31
2238_CR33
2238_CR13
W Wu (2238_CR7) 2021; 70
2238_CR15
L Kou (2238_CR26) 2022; 6
J Li (2238_CR18) 2023; 2
Y Cheng (2238_CR3) 2022; 26
M Asad (2238_CR29) 2020; 10
SO Ajakwe (2238_CR1) 2022; 6
T Li (2238_CR2) 2020; 37
Q Ma (2238_CR20) 2021; 39
Y Zhang (2238_CR16) 2023; 34
T Sun (2238_CR12) 2023; 45
X He (2238_CR17) 2023; 10
2238_CR22
2238_CR23
2238_CR24
2238_CR25
Q Jiang (2238_CR19) 2021; 2021
2238_CR27
2238_CR28
2238_CR8
2238_CR6
MAP Putra (2238_CR4) 2023; 21
Z Liu (2238_CR10) 2023; 11
H Vaisocherova (2238_CR31) 2016
P Tian (2238_CR21) 2021; 108
References_xml – ident: CR22
– volume: 108
  year: 2021
  ident: CR21
  article-title: Towards asynchronous federated learning-based threat detection: a DC-adam approach
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2021.102344
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR19
  article-title: Intelligent intrusion detection based on federated learning for edge-assisted internet of things
  publication-title: Secur Commun Netw
  doi: 10.1155/2021/9361348
– volume: 26
  start-page: 552
  issue: 3
  year: 2022
  end-page: 556
  ident: CR3
  article-title: Federated transfer learning with client selection for intrusion detection in mobile edge computing
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2022.3140273
– ident: CR30
– ident: CR33
– volume: 6
  start-page: 2
  year: 2022
  ident: CR1
  article-title: DRONET: multi-tasking framework for real-time industrial facility aerial surveillance and safety
  publication-title: Drones
  doi: 10.3390/drones6020046
– ident: CR6
– ident: CR8
– volume: 39
  start-page: 3654
  issue: 12
  year: 2021
  end-page: 3672
  ident: CR20
  article-title: FedSA: a semi-asynchronous federated learning mechanism in heterogeneous edge computing
  publication-title: IEEE J Select Areas Commun
  doi: 10.1109/JSAC.2021.3118435
– ident: CR25
– ident: CR27
– volume: 11
  start-page: 18448
  year: 2023
  end-page: 18460
  ident: CR10
  article-title: An asynchronous federated learning arbitration model for low-rate ddos attack detection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3247512
– ident: CR23
– year: 2021
  ident: CR14
  article-title: Temporal weighted averaging for asynchronous federated intrusion detection systems
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/5844728
– volume: 10
  start-page: 120
  issue: 1
  year: 2023
  end-page: 132
  ident: CR17
  article-title: CGAN-based collaborative intrusion detection for UAV networks: a blockchain-empowered distributed federated learning approach
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3200121
– volume: 2
  start-page: 1
  year: 2023
  end-page: 10
  ident: CR18
  article-title: An efficient federated learning system for network intrusion detection
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2023.3236995
– volume: 21
  year: 2023
  ident: CR4
  article-title: ACS: accuracy-based client selection mechanism for federated industrial IoT
  publication-title: Internet Things
  doi: 10.1016/j.iot.2022.100657
– volume: 34
  start-page: 1007
  issue: 3
  year: 2023
  end-page: 1019
  ident: CR16
  article-title: FedMDS: an efficient model discrepancy-aware semi-asynchronous clustered federated learning framework
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2023.3237752
– year: 2016
  ident: CR31
  article-title: WSN-DS: a dataset for intrusion detection systems in wireless sensor networks
  publication-title: J Sens
  doi: 10.1155/2016/4731953
– volume: 3
  start-page: 197
  issue: 2
  year: 2022
  end-page: 205
  ident: CR5
  article-title: Straggler-resilient federated learning: leveraging the interplay between statistical accuracy and system heterogeneity
  publication-title: IEEE J Select Areas Inf Theory.
  doi: 10.1109/JSAIT.2022.3205475
– ident: CR15
– volume: 6
  start-page: 11
  year: 2022
  ident: CR26
  article-title: An intrusion detection model for drone communication network in SDN environment
  publication-title: Drones
  doi: 10.3390/drones6110342
– volume: 10
  start-page: 8
  year: 2020
  ident: CR29
  article-title: FedOpt: towards communication efficiency and privacy preservation in federated learning
  publication-title: Appl Sci
  doi: 10.3390/app10082864
– ident: CR13
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  end-page: 60
  ident: CR2
  article-title: Federated learning: challenges, methods, and future directions
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2020.2975749
– ident: CR32
– volume: 31
  start-page: 4229
  issue: 10
  year: 2020
  end-page: 4238
  ident: CR9
  article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2953131
– volume: 03
  start-page: 4124
  issue: 72
  year: 2023
  end-page: 4129
  ident: CR11
  article-title: Client selection with staleness compensation in asynchronous federated learning
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2022.3220809
– volume: 45
  start-page: 4289
  issue: 4
  year: 2023
  end-page: 4301
  ident: CR12
  article-title: Decentralized federated averaging
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3196503
– volume: 70
  start-page: 655
  issue: 5
  year: 2021
  end-page: 668
  ident: CR7
  article-title: SAFA: a semi-asynchronous protocol for fast federated learning with low overhead
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2020.2994391
– ident: CR28
– ident: CR24
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 2238_CR2
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2020.2975749
– volume: 45
  start-page: 4289
  issue: 4
  year: 2023
  ident: 2238_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3196503
– volume: 39
  start-page: 3654
  issue: 12
  year: 2021
  ident: 2238_CR20
  publication-title: IEEE J Select Areas Commun
  doi: 10.1109/JSAC.2021.3118435
– ident: 2238_CR8
  doi: 10.1109/ICTC55196.2022.9952400
– volume: 10
  start-page: 8
  year: 2020
  ident: 2238_CR29
  publication-title: Appl Sci
  doi: 10.3390/app10082864
– ident: 2238_CR27
  doi: 10.48550/arXiv.2007.14390
– volume: 31
  start-page: 4229
  issue: 10
  year: 2020
  ident: 2238_CR9
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2953131
– ident: 2238_CR30
– ident: 2238_CR23
  doi: 10.1109/CSCWD54268.2022.9776061
– ident: 2238_CR28
– year: 2016
  ident: 2238_CR31
  publication-title: J Sens
  doi: 10.1155/2016/4731953
– volume: 3
  start-page: 197
  issue: 2
  year: 2022
  ident: 2238_CR5
  publication-title: IEEE J Select Areas Inf Theory.
  doi: 10.1109/JSAIT.2022.3205475
– ident: 2238_CR6
  doi: 10.1109/IPDPS53621.2022.00100
– volume: 21
  year: 2023
  ident: 2238_CR4
  publication-title: Internet Things
  doi: 10.1016/j.iot.2022.100657
– ident: 2238_CR22
  doi: 10.1109/SECONWorkshops56311.2022.9926402
– volume: 108
  year: 2021
  ident: 2238_CR21
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2021.102344
– ident: 2238_CR32
  doi: 10.21227/mbc1-1h68
– volume: 03
  start-page: 4124
  issue: 72
  year: 2023
  ident: 2238_CR11
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2022.3220809
– volume: 11
  start-page: 18448
  year: 2023
  ident: 2238_CR10
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3247512
– volume: 2
  start-page: 1
  year: 2023
  ident: 2238_CR18
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2023.3236995
– ident: 2238_CR15
  doi: 10.1109/ICPADS51040.2020.00030
– ident: 2238_CR25
  doi: 10.1109/ICCCI50826.2021.9457024
– year: 2021
  ident: 2238_CR14
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/5844728
– volume: 10
  start-page: 120
  issue: 1
  year: 2023
  ident: 2238_CR17
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3200121
– volume: 6
  start-page: 11
  year: 2022
  ident: 2238_CR26
  publication-title: Drones
  doi: 10.3390/drones6110342
– volume: 70
  start-page: 655
  issue: 5
  year: 2021
  ident: 2238_CR7
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2020.2994391
– volume: 26
  start-page: 552
  issue: 3
  year: 2022
  ident: 2238_CR3
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2022.3140273
– volume: 34
  start-page: 1007
  issue: 3
  year: 2023
  ident: 2238_CR16
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2023.3237752
– volume: 2021
  start-page: 1
  year: 2021
  ident: 2238_CR19
  publication-title: Secur Commun Netw
  doi: 10.1155/2021/9361348
– volume: 6
  start-page: 2
  year: 2022
  ident: 2238_CR1
  publication-title: Drones
  doi: 10.3390/drones6020046
– ident: 2238_CR13
  doi: 10.1145/3560905.3568538
– ident: 2238_CR33
  doi: 10.1109/MILCOM55135.2022.10017532
– ident: 2238_CR24
  doi: 10.1109/SYNCHROINFO51390.2021.9488416
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3379605
Snippet Federated Learning (FL) has emerged as a transformative artificial intelligence paradigm, facilitating knowledge sharing among distributed edge devices while...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5303
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Clients
Communication
Complex Systems
Computational Intelligence
Control
Cybersecurity
Deep learning
Design
Drones
Effectiveness
Efficiency
Engineering
Federated learning
Flexibility
Learning
Machine learning
Mechatronics
Optimization techniques
Original Article
Pattern Recognition
Privacy
Robotics
Systems Biology
Wireless networks
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZg6YELhbaoS7fIBw6g1mJjO9mklwohVhwQQlAkbpGfq5W2ATa7SPx7Zhxno1aCC4dcEttJNDOeh2e-IeQgNVgYwh3LwMthUknJFPcgV3o40rm13KtQKHwxurzM7-6Kqxhwq2NaZbsnho3a3huMkR8LLJ9FByb__fDIsGsUnq7GFhrrZANREpKQunfT8pNIEGmlU7dCyIA4tYrBDDO416Ql5lmOuLxJrKtpquvQ1WegxODiuC_8q7s6g_S_M9SgmsYf3_tT22QrGqX0pOGiHbLmqk9kJ4p9TQ8jNvXRZ1Kd3FyzsbO_aMjQg_EUYyWTyczNGXju0xnWV9La_Z0yVT9XBrF375c19QhaAXatpbFPxYSu4GMpGM4wxSzn8NjCBEerJjv9C7kdn_05PWexZQMzIMsLNvJqKBVXIlGIRWiUSzi3MvdeOIVQ7xnYx0XhhObeCsFTgU5yKnyhpbdai13Sq-A1Xwl1wunc81QnRkmTisKCMSm1Ag7imcpHfZK0xChNxDPHthqzskNiRgKW8CFlIGBZ9MmP1ZyHBs3jzdGDlmpllOy67EjWJz9bunePX19t7-3VvpFNjqwWyhwHpLeYL9138sE8Lab1fD_w9Qvm9Png
  priority: 102
  providerName: ProQuest
Title ASR-Fed: agnostic straggler-resilient semi-asynchronous federated learning technique for secured drone network
URI https://link.springer.com/article/10.1007/s13042-024-02238-9
https://www.proquest.com/docview/3114601068
Volume 15
WOSCitedRecordID wos001271168400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: P5Z
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: K7-
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: M7S
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: RSV
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xjQd4ADaYKIzKDzyAwFJjO4nD20CrkEBV1QKaeIlsx64qlYCaFmn_fnep0wACJHhIHmJfnMR3uTv77juAp6mjxBDheYZeDldGKW5EQLmyo9zqqhLBtInC7_PJRF9eFtOYFNZ00e7dlmT7p-6T3cjz5qhT8BAkpgdwhOpOU8GG2fxTx0UyIXyVXslKqVqcqf3KyyjDa7tgRJ1pQuNNYjbN74f5WWP1ZugvO6etQhrf_b9XuQd3ogHKzncccww3fH0Ct3-AJTyB4yjwDXsWUamf34f6fD7jY1-9Ym1sHlIzWiVZLFZ-zdFnX64os5I1_suSm-aqdoS6-3XbsEBwFWjRVixWqFiwPXAsQ5MZSdx2jc0VEnhW7-LSH8DH8cWHN295LNbAHUrxhufBjJQRRiaGUAid8YkQldIhSG8I5D1Dy7govLQiVFKKVJJ7nMpQWBUqa-UpHNY4zENgXnqrg0ht4oxyqSwqNCOVNcg7IjM6H0DSTUjpIpI5FdRYlT0GM33gEh-kbD9wWQzgxZ7m2w7H46-9z7p5LqNMN6WkBG5yofUAXnbz2jf_-W6P_q37Y7gliDXahMczONyst_4J3HTfN8tmPYSj1xeT6WwIB-9yPqRQ1Tmep-nnYSsF14IM-Nk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXSnmIhQI-gAQCi43tvCpVqAJWrXZZIShSb6njx2qlJS3JLqh_it_YmTw2AoneeuCQS2I7TvzNeMb2fAPwPDQUGCIcj9DL4UorxbXwKFf5MM4Ta4XXdaDwJJ5Ok-Pj9PMG_O5iYehYZacTa0VtTw2tkb-VFD5LDkzy7uwHp6xRtLvapdBoYDF257_QZav2Dj_g-L4QYvTx6P0Bb7MKcINwW_LY66HSQstAE12e0S4QwqrEe-k0sZFHaMKlqZO58FZKEUry40Lp01x5m-cS270G15VMYpKrccw7_MqAmF366V1KVTNcrdd8hhHea45BJlFCPMBBG8fTRPPR0gLHTuElSA_9OVf2BvBfe7b1VDja-t9-4h243RrdbL-Rkm3YcMVd2G7VWsVettzbr-5Bsf_1Cx85u8vqE4hYntFa0Gy2cCUvXTVfUPwoq9z3OdfVeWGIW_h0VTFPpBxot1vW5uGYsTU9LkPHAKuYVYmPLVZwrGhO39-Hb1fy3Q9gs8DXPATmpMsTL8I8MFqZUKYWjWWVa5QQEekkHkDQDX5mWr52ShuyyHqmaQJMhh3JasBk6QBer-ucNWwll5be6VCStZqrynqIDOBNh7P-8b9be3R5a8_g5sHRp0k2OZyOH8MtQTCvQzp3YHNZrtwTuGF-LudV-bSWKQYnV42_Cx5UViY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BqRAcoC1FLJTWBw5FxdqN7WQTbhWwAlGtqr7UW-TnaqUlVJtdJP49M3lsWtQioR5yiT1xYs_EM_Z8nwHexZaAIcLzBKMcrrRSXIuAdmUGQ5M6J4KugMJHw_E4vbzMjq-h-Kts93ZLssY0EEtTsehfudDvgG8UhXOcX_ASZLIP4ZGiRHqK108vWo2SEXGtdBOulKrinFqtwgwSvFcnJqZJSsy8UYOsub2Zm7NX55L-tYtaTU6j5_f_rA141jim7LDWpE144IsteHqNrnALNpsfQcn2G7bq9y-gODw94SPvPrIqZw-lGa2eTCYzP-cYy09nhLhkpf8x5br8XVhi4_25LFkgGgv0dB1rTq6YsBWhLENXGkXsco7FDgU8K-p89W04H305-_SVN4c4cIvWveDDoAdKCy0jTeyEVvtICKfSEKTXRP6eoMecZV4aEZyUIpYUNscyZEYFZ4x8CWsFNvMKmJfepEHEJrJa2VhmDt1LZTTqlEh0OuxB1A5ObhuGczpoY5Z33MzUwTm-SF51cJ714GAlc1Xze_yz9k475nlj62UuCdhNoXXagw_tGHfFdz_t9f9V34PHx59H-dG38fc38ESQllSYyB1YW8yX_i2s21-LaTnfrUzgD-x8AE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASR-Fed%3A+agnostic+straggler-resilient+semi-asynchronous+federated+learning+technique+for+secured+drone+network&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Ihekoronye%2C+Vivian+Ukamaka&rft.au=Nwakanma%2C+Cosmas+Ifeanyi&rft.au=Kim%2C+Dong-Seong&rft.au=Lee%2C+Jae+Min&rft.date=2024-11-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=11&rft.spage=5303&rft.epage=5319&rft_id=info:doi/10.1007%2Fs13042-024-02238-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02238_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon