ASR-Fed: agnostic straggler-resilient semi-asynchronous federated learning technique for secured drone network
Federated Learning (FL) has emerged as a transformative artificial intelligence paradigm, facilitating knowledge sharing among distributed edge devices while upholding data privacy. However, dynamic networks and resource-constrained devices such as drones, face challenges like power outages and netw...
Saved in:
| Published in: | International journal of machine learning and cybernetics Vol. 15; no. 11; pp. 5303 - 5319 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1868-8071, 1868-808X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Federated Learning (FL) has emerged as a transformative artificial intelligence paradigm, facilitating knowledge sharing among distributed edge devices while upholding data privacy. However, dynamic networks and resource-constrained devices such as drones, face challenges like power outages and network contingencies, leading to the straggler effect that impedes the global model performance. To address this, we present ASR-Fed, a novel agnostic straggler-resilient semi-asynchronous FL aggregating algorithm. ASR-Fed incorporates a selection function to dynamically utilize updates from high-performing and active clients, while circumventing contributions from straggling clients during future aggregations. We evaluate the effectiveness of ASR-Fed using two prominent cyber-security datasets, WSN-DS, and Edge-IIoTset, and perform simulations with different deep learning models across formulated unreliable network scenarios. The simulation results demonstrate ASR-Fed’s effectiveness in achieving optimal accuracy while significantly reducing communication costs when compared with other FL aggregating protocols. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1868-8071 1868-808X |
| DOI: | 10.1007/s13042-024-02238-9 |