A smoothing proximal gradient algorithm for matrix rank minimization problem

In this paper, we study the low-rank matrix minimization problem, where the loss function is convex but nonsmooth and the penalty term is defined by the cardinality function. We first introduce an exact continuous relaxation, that is, both problems have the same minimizers and the same optimal value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 81; H. 2; S. 519 - 538
Hauptverfasser: Yu, Quan, Zhang, Xinzhen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2022
Springer Nature B.V
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the low-rank matrix minimization problem, where the loss function is convex but nonsmooth and the penalty term is defined by the cardinality function. We first introduce an exact continuous relaxation, that is, both problems have the same minimizers and the same optimal value. In particular, we introduce a class of lifted stationary points of the relaxed problem and show that any local minimizer of the relaxed problem must be a lifted stationary point. In addition, we derive lower bound property for the nonzero singular values of the lifted stationary point and hence also of the local minimizers of the relaxed problem. Then the smoothing proximal gradient (SPG) algorithm is proposed to find a lifted stationary point of the continuous relaxation model. Moreover, it is shown that any accumulating point of the sequence generated by SPG algorithm is a lifted stationary point. At last, numerical examples show the efficiency of the SPG algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-021-00337-9