Convexity and Monotonicity Involving the Complete Elliptic Integral of the First Kind
Let K r be the complete elliptic integral of the first kind defined on 0 , 1 . By virtue of the auxiliary function H f , g = f ′ / g ′ g - f , we prove that the function Q p x = ln p / 1 - x K x is strictly convex on 0 , 1 if and only if 0 < p ≤ 4 , thus answering a conjecture. Moreover, we compl...
Uloženo v:
| Vydáno v: | Resultate der Mathematik Ročník 78; číslo 1; s. 29 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1422-6383, 1420-9012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
K
r
be the complete elliptic integral of the first kind defined on
0
,
1
. By virtue of the auxiliary function
H
f
,
g
=
f
′
/
g
′
g
-
f
, we prove that the function
Q
p
x
=
ln
p
/
1
-
x
K
x
is strictly convex on
0
,
1
if and only if
0
<
p
≤
4
, thus answering a conjecture. Moreover, we completely described the monotonicity of
Q
p
x
on
0
,
1
for different
p
∈
0
,
∞
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1422-6383 1420-9012 |
| DOI: | 10.1007/s00025-022-01799-x |