Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing

This paper proposes a new self-adaptive meta-heuristic (MH) algorithm for multiobjective optimisation. The adaptation is accomplished by means of estimation of distribution. The differential evolution reproduction strategy is modified and used in this dominance-based multiobjective optimiser whereas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering with computers Ročník 38; číslo 1; s. 695 - 713
Hlavní autoři: Wansasueb, Kittinan, Pholdee, Nantiwat, Panagant, Natee, Bureerat, Sujin
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.02.2022
Springer Nature B.V
Témata:
ISSN:0177-0667, 1435-5663
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a new self-adaptive meta-heuristic (MH) algorithm for multiobjective optimisation. The adaptation is accomplished by means of estimation of distribution. The differential evolution reproduction strategy is modified and used in this dominance-based multiobjective optimiser whereas population-based incremental learning is used to estimate the control parameters. The new method is employed to solve aeroelastic multiobjective optimisation of an aircraft wing which optimises structural weight and flutter speed. Design variables in the aeroelastic design problem include thicknesses of ribs, spars and composite layers. Also, the ply orientation of the upper and lower composite skins are assigned as the design variables. Additional benchmark test problems are also use to validate the search performance of the proposed algorithm. The performance validation reveals that the proposed optimiser is among the state-of-the-art multiobjective meta-heuristics. The concept of using estimation of distribution algorithm for tuning meta-heuristic control parameters is efficient and effective and becomes a new direction for improving MH performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-020-01077-w