Projection Methods for Dynamical Low-Rank Approximation of High-Dimensional Problems

We consider dynamical low-rank approximation on the manifold of fixed-rank matrices and tensor trains (also called matrix product states), and analyse projection methods for the time integration of such problems. First, under suitable approximability assumptions, we prove error estimates for the exp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational methods in applied mathematics Ročník 19; číslo 1; s. 73 - 92
Hlavní autoři: Kieri, Emil, Vandereycken, Bart
Médium: Journal Article
Jazyk:angličtina
Vydáno: Minsk De Gruyter 01.01.2019
Walter de Gruyter GmbH
Témata:
ISSN:1609-4840, 1609-9389
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider dynamical low-rank approximation on the manifold of fixed-rank matrices and tensor trains (also called matrix product states), and analyse projection methods for the time integration of such problems. First, under suitable approximability assumptions, we prove error estimates for the explicit Euler method equipped with quasi-optimal projections to the manifold. Then we discuss the possibilities and difficulties with higher-order explicit methods. In particular, we discuss ways for limiting rank growth in the increments, and robustness with respect to small singular values.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1609-4840
1609-9389
DOI:10.1515/cmam-2018-0029