Calculating a function of a matrix with a real spectrum

Let T be a square matrix with a real spectrum, and let f be an analytic function. The problem of the approximate calculation of f ( T ) is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that T is triangular and its diagonal entries t i i are arranged in inc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 90; číslo 3; s. 905 - 930
Hlavní autoři: Kubelík, P., Kurbatov, V. G., Kurbatova, I. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2022
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let T be a square matrix with a real spectrum, and let f be an analytic function. The problem of the approximate calculation of f ( T ) is discussed. Applying the Schur triangular decomposition and the reordering, one can assume that T is triangular and its diagonal entries t i i are arranged in increasing order. To avoid calculations using the differences t i i − t j j with close (including equal) t i i and t j j , it is proposed to represent T in a block form and calculate the two main block diagonals using interpolating polynomials. The rest of the f ( T ) entries can be calculated using the Parlett recurrence algorithm. It is also proposed to perform some scalar operations (such as the building of interpolating polynomials) with an enlarged number of significant decimal digits.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-021-01214-6