Second-Order Lagrange Multiplier Rules in Multiobjective Optimal Control of Infinite Dimensional Systems Under State Constraints and Mixed Pointwise Constraints

We investigate a multiobjective optimal control problem, governed by a strongly continuous semigroup operator in an infinite dimensional separable Banach space, and with final-state constraints, pointwise pure state constraints and a mixed pointwise control-state constraint. Basing on necessary opti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics & optimization Ročník 84; číslo Suppl 2; s. 1521 - 1553
Hlavní autor: Nguyen Dinh, Tuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2021
Springer Nature B.V
Témata:
ISSN:0095-4616, 1432-0606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We investigate a multiobjective optimal control problem, governed by a strongly continuous semigroup operator in an infinite dimensional separable Banach space, and with final-state constraints, pointwise pure state constraints and a mixed pointwise control-state constraint. Basing on necessary optimality conditions obtained for an abstract multiobjective optimization framework, we establish a second-order Lagrange multiplier rule, of Fritz-John type, for local weak Pareto solutions of the problem under study. As a consequence of the main result, we also derive a multiplier rule for a multiobjective optimal control model driven by a bilinear system being affine-linear in the control, and with an objective function of continuous quadratic form.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-021-09803-6