Second-Order Lagrange Multiplier Rules in Multiobjective Optimal Control of Infinite Dimensional Systems Under State Constraints and Mixed Pointwise Constraints
We investigate a multiobjective optimal control problem, governed by a strongly continuous semigroup operator in an infinite dimensional separable Banach space, and with final-state constraints, pointwise pure state constraints and a mixed pointwise control-state constraint. Basing on necessary opti...
Uloženo v:
| Vydáno v: | Applied mathematics & optimization Ročník 84; číslo Suppl 2; s. 1521 - 1553 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0095-4616, 1432-0606 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate a multiobjective optimal control problem, governed by a strongly continuous semigroup operator in an infinite dimensional separable Banach space, and with final-state constraints, pointwise pure state constraints and a mixed pointwise control-state constraint. Basing on necessary optimality conditions obtained for an abstract multiobjective optimization framework, we establish a second-order Lagrange multiplier rule, of Fritz-John type, for local weak Pareto solutions of the problem under study. As a consequence of the main result, we also derive a multiplier rule for a multiobjective optimal control model driven by a bilinear system being affine-linear in the control, and with an objective function of continuous quadratic form. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s00245-021-09803-6 |