Estimating QSVT angles for matrix inversion with large condition numbers
Quantum Singular Value Transformation (QSVT) is a state-of-the-art, near-optimal quantum algorithm that can be used for matrix inversion. The QSVT circuit is parameterized by a sequence of angles that must be pre-calculated classically, with the number of angles increasing as the matrix condition nu...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 525; číslo C; s. 113767 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
15.03.2025
Elsevier |
| Témata: | |
| ISSN: | 0021-9991 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Quantum Singular Value Transformation (QSVT) is a state-of-the-art, near-optimal quantum algorithm that can be used for matrix inversion. The QSVT circuit is parameterized by a sequence of angles that must be pre-calculated classically, with the number of angles increasing as the matrix condition number grows. Computing QSVT angles for ill-conditioned problems is a numerically challenging task. We propose a numerical technique for estimating QSVT angles for large condition numbers. This technique allows one to avoid expensive numerical computations of QSVT angles and to emulate QSVT circuits for solving ill-conditioned problems. |
|---|---|
| Bibliografie: | USDOE |
| ISSN: | 0021-9991 |
| DOI: | 10.1016/j.jcp.2025.113767 |