Estimating QSVT angles for matrix inversion with large condition numbers

Quantum Singular Value Transformation (QSVT) is a state-of-the-art, near-optimal quantum algorithm that can be used for matrix inversion. The QSVT circuit is parameterized by a sequence of angles that must be pre-calculated classically, with the number of angles increasing as the matrix condition nu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 525; číslo C; s. 113767
Hlavní autoři: Novikau, I., Joseph, I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 15.03.2025
Elsevier
Témata:
ISSN:0021-9991
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantum Singular Value Transformation (QSVT) is a state-of-the-art, near-optimal quantum algorithm that can be used for matrix inversion. The QSVT circuit is parameterized by a sequence of angles that must be pre-calculated classically, with the number of angles increasing as the matrix condition number grows. Computing QSVT angles for ill-conditioned problems is a numerically challenging task. We propose a numerical technique for estimating QSVT angles for large condition numbers. This technique allows one to avoid expensive numerical computations of QSVT angles and to emulate QSVT circuits for solving ill-conditioned problems.
Bibliografie:USDOE
ISSN:0021-9991
DOI:10.1016/j.jcp.2025.113767