Research on the improvement effect of machine learning and neural network algorithms on the prediction of learning achievement
In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to c...
Saved in:
| Published in: | Neural computing & applications Vol. 34; no. 12; pp. 9369 - 9383 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.06.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to calculate the similarity of courses. Simultaneously, this paper proposes an improved hybrid multi-weight improvement algorithm to improve the cold start problem that cannot be solved by traditional algorithms. In addition, this paper combines the neural network structure to construct a model framework structure, sets the functional modules according to actual needs, and analyzes and predicts students' personal performance through student portraits. Finally, this paper designs experiments to analyze the effectiveness of the model proposed in this paper. From the experimental data, it can be seen that the model proposed in this paper basically meets the expected requirements. |
|---|---|
| AbstractList | In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the traditional data processing algorithms and proposes a similarity calculation method for courses. Moreover, this paper uses cosine similarity to calculate the similarity of courses. Simultaneously, this paper proposes an improved hybrid multi-weight improvement algorithm to improve the cold start problem that cannot be solved by traditional algorithms. In addition, this paper combines the neural network structure to construct a model framework structure, sets the functional modules according to actual needs, and analyzes and predicts students' personal performance through student portraits. Finally, this paper designs experiments to analyze the effectiveness of the model proposed in this paper. From the experimental data, it can be seen that the model proposed in this paper basically meets the expected requirements. |
| Author | Li, Yi Su, Yingying Wang, Shengxu |
| Author_xml | – sequence: 1 givenname: Yingying surname: Su fullname: Su, Yingying email: 2005008@muc.edu.cn, syylesyu@163.com organization: School of Mechanical Engineering, Shenyang University – sequence: 2 givenname: Shengxu surname: Wang fullname: Wang, Shengxu organization: School of Mechanical Engineering, Shenyang University – sequence: 3 givenname: Yi surname: Li fullname: Li, Yi organization: School of Mechanical Engineering, Shenyang University |
| BookMark | eNp9kE9LxDAQxYOs4Lr6BTwFPFenTdOmR1n8BwuC6Lmk6XSbtU3XJKt48bObUmXBw0KGJOT93kzeKZmZwSAhFzFcxQD5tQPgSRzBWBljLBJHZB6n4cCAixmZQ5GOTyk7IafObQAgzQSfk-9ndCitaulgqG-R6n5rhw_s0XiKTYPK06GhvVStNki7oDXarKk0NTW4s7ILm_8c7BuV3Xqw2re9-_PaWqy18jpcg8eeDV44tTgjx43sHJ7_7gvyenf7snyIVk_3j8ubVaRYXPgohyrhAljD0jyWssYKQeWVyuqEhaV4rpgSDeOCV3XMElGAzERVFbVMkIdAFuRy8g2fe9-h8-Vm2FkTWpZJlqUFz0MeQSUmlbKDcxabUmkvx_m9lborYyjHtMsp7RLGGtMuRUCTf-jW6l7ar8MQmyAXxGaNdj_VAeoHjgyWQw |
| CitedBy_id | crossref_primary_10_1155_2022_2718787 crossref_primary_10_1177_14727978241312995 crossref_primary_10_1007_s00521_022_07342_x crossref_primary_10_1109_ACCESS_2024_3471681 crossref_primary_10_1109_ACCESS_2023_3295580 crossref_primary_10_1155_2022_4221254 |
| Cites_doi | 10.3102/0002831214549453 10.1016/j.jsp.2016.06.001 10.1016/j.enconman.2013.10.060 10.1148/radiol.2016150409 10.1037/edu0000125 10.1016/j.eswa.2014.10.040 10.1016/j.cedpsych.2014.03.004 10.1016/j.energy.2015.08.019 10.1016/j.dsp.2014.05.008 10.1002/pits.21940 10.1111/1756-2171.12062 10.1038/s41467-018-07882-8 10.1016/j.labeco.2016.12.008 10.1016/j.intell.2018.05.006 10.1021/pr501173s 10.17105/SPR45-2.250-267 10.2298/PSI1604357M 10.1007/s10212-017-0361-x 10.1109/TIP.2017.2740564 10.1021/acs.chemmater.6b04663 10.1016/j.ssci.2015.08.008 10.1016/j.solener.2018.06.092 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-021-06333-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 9383 |
| ExternalDocumentID | 10_1007_s00521_021_06333_8 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-70b25803f3471aadebe0c7bc6d23d23c57c3c8f3585bd132890a68bb9da2e5633 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675747400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 00:55:12 EST 2025 Sat Nov 29 02:59:22 EST 2025 Tue Nov 18 22:30:41 EST 2025 Fri Feb 21 02:45:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Student performance Neural network Machine learning Prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-70b25803f3471aadebe0c7bc6d23d23c57c3c8f3585bd132890a68bb9da2e5633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2664957046 |
| PQPubID | 2043988 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2664957046 crossref_citationtrail_10_1007_s00521_021_06333_8 crossref_primary_10_1007_s00521_021_06333_8 springer_journals_10_1007_s00521_021_06333_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20220600 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Patwardhan, Patidar, George (CR17) 2014; 32 Kelly, Rainford, Darcy (CR10) 2016; 280 Rabiner, Godwin, Dodge (CR19) 2016; 45 Chen, Meng, Cao (CR6) 2019; 10 Zhu, Wu, Huang (CR21) 2017; 27 Klusmann, Richter, Lüdtke (CR12) 2016; 108 Benson, Kranzler, Floyd (CR3) 2016; 58 Koulayev (CR13) 2014; 45 Beigi, Maroosi (CR2) 2018; 171 Brown, Hanna (CR5) 2018; 69 Pinxten, Soom, Peeters (CR18) 2019; 34 Mohoric, Taksic (CR16) 2016; 49 Ayala, dos Santos, Mariani (CR1) 2015; 93 Gotmare, Patidar, George (CR9) 2015; 42 Varley, Miglio, Ha (CR20) 2017; 29 Brehm, Imberman, Lovenheim (CR4) 2017; 44 Kertesz-Farkas, Keich, Noble (CR11) 2015; 14 Mcgill, Spurgin (CR15) 2016; 53 Chen, Yuan, Tian (CR7) 2014; 78 Dzeng, Lin, Fang (CR8) 2016; 82 Zimmerman, Kitsantas (CR22) 2014; 39 Marsh, Abduljabbar, Parker (CR14) 2015; 52 A Gotmare (6333_CR9) 2015; 42 Barry J Zimmerman (6333_CR22) 2014; 39 DL Rabiner (6333_CR19) 2016; 45 Z Chen (6333_CR7) 2014; 78 RJ Mcgill (6333_CR15) 2016; 53 M Brehm (6333_CR4) 2017; 44 HW Marsh (6333_CR14) 2015; 52 NF Benson (6333_CR3) 2016; 58 ZL Chen (6333_CR6) 2019; 10 X Zhu (6333_CR21) 2017; 27 AM Beigi (6333_CR2) 2018; 171 RJ Dzeng (6333_CR8) 2016; 82 M Pinxten (6333_CR18) 2019; 34 HVH Ayala (6333_CR1) 2015; 93 BS Kelly (6333_CR10) 2016; 280 A Kertesz-Farkas (6333_CR11) 2015; 14 S Koulayev (6333_CR13) 2014; 45 T Mohoric (6333_CR16) 2016; 49 GTL Brown (6333_CR5) 2018; 69 U Klusmann (6333_CR12) 2016; 108 AP Patwardhan (6333_CR17) 2014; 32 JB Varley (6333_CR20) 2017; 29 |
| References_xml | – volume: 52 start-page: 168 issue: 1 year: 2015 end-page: 202 ident: CR14 article-title: The internal/external frame of reference model of self-concept and achievement relations: age-cohort and cross-cultural differences[J] publication-title: Am Educ Res J doi: 10.3102/0002831214549453 – volume: 58 start-page: 1 issue: 3 year: 2016 end-page: 19 ident: CR3 article-title: Examining the integrity of measurement of cognitive abilities in the prediction of achievement: comparisons and contrasts across variables from higher-order and bifactor models[J] publication-title: J Sch Psychol doi: 10.1016/j.jsp.2016.06.001 – volume: 78 start-page: 306 issue: 4 year: 2014 end-page: 315 ident: CR7 article-title: Improved gravitational search algorithm for parameter identification of water turbine regulation system[J] publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.10.060 – volume: 280 start-page: 252 issue: 1 year: 2016 end-page: 260 ident: CR10 article-title: The development of expertise in radiology: in chest radiograph interpretation, “expert” search pattern may predate “expert” levels of diagnostic accuracy for pneumothorax identification[J] publication-title: Radiology doi: 10.1148/radiol.2016150409 – volume: 108 start-page: 1193 issue: 8 year: 2016 end-page: 1203 ident: CR12 article-title: Teachers’ emotional exhaustion is negatively related to students’ achievement: evidence from a large-scale assessment study [J] publication-title: J Edu Psychol doi: 10.1037/edu0000125 – volume: 42 start-page: 2538 issue: 5 year: 2015 end-page: 2546 ident: CR9 article-title: Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model[J] publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.040 – volume: 39 start-page: 145 issue: 2 year: 2014 end-page: 155 ident: CR22 article-title: Comparing students’ self-discipline and self-regulation measures and their prediction of academic achievement[J] publication-title: Contemp Edu Psychol doi: 10.1016/j.cedpsych.2014.03.004 – volume: 93 start-page: 1515 issue: 1 year: 2015 end-page: 1522 ident: CR1 article-title: An improved free search differential evolution algorithm: a case study on parameters identification of one diode equivalent circuit of a solar cell module[J] publication-title: Energy doi: 10.1016/j.energy.2015.08.019 – volume: 32 start-page: 156 issue: 3 year: 2014 end-page: 163 ident: CR17 article-title: On a cuckoo search optimization approach towards feedback system identification[J] publication-title: Digital Signal Process doi: 10.1016/j.dsp.2014.05.008 – volume: 53 start-page: 677 issue: 7 year: 2016 end-page: 689 ident: CR15 article-title: ASSESSING THE INCREMENTAL VALUE OF KABC-II LURIA MODEL SCORES IN PREDICTING ACHIEVEMENT: WHAT DO THEY TELL US BEYOND THE MPI?[J] publication-title: Psychol Sch doi: 10.1002/pits.21940 – volume: 45 start-page: 553 issue: 3 year: 2014 end-page: 575 ident: CR13 article-title: Search for differentiated products: identification and estimation[J] publication-title: Rand J Econ doi: 10.1111/1756-2171.12062 – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 12 ident: CR6 article-title: A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides[J] publication-title: Nat Commun doi: 10.1038/s41467-018-07882-8 – volume: 44 start-page: 133 issue: 5 year: 2017 end-page: 150 ident: CR4 article-title: Achievement effects of individual performance incentives in a teacher merit pay tournament[J] publication-title: Labour Econ doi: 10.1016/j.labeco.2016.12.008 – volume: 69 start-page: 94 issue: 3 year: 2018 end-page: 103 ident: CR5 article-title: Swedish student perceptions of achievement practices: the role of intelligence[J] publication-title: Intelligence doi: 10.1016/j.intell.2018.05.006 – volume: 14 start-page: 3027 issue: 8 year: 2015 end-page: 3038 ident: CR11 article-title: Tandem mass spectrum identification via cascaded search[J] publication-title: J Proteome Res doi: 10.1021/pr501173s – volume: 45 start-page: 250 issue: 2 year: 2016 end-page: 267 ident: CR19 article-title: Predicting academic achievement and attainment: the contribution of early academic skills, attention difficulties, and social competence[J] publication-title: Sch Psychol Rev doi: 10.17105/SPR45-2.250-267 – volume: 49 start-page: 357 issue: 4 year: 2016 end-page: 374 ident: CR16 article-title: Emotional understanding as a predictor of socio-emotional functioning and school achievement in adolescence[J] publication-title: Psihologija doi: 10.2298/PSI1604357M – volume: 34 start-page: 45 issue: 1 year: 2019 end-page: 66 ident: CR18 article-title: At-risk at the gate: prediction of study success of first-year science and engineering students in an open-admission university in Flanders—any incremental validity of study strategies?[J] publication-title: Eur J Psychol Edu doi: 10.1007/s10212-017-0361-x – volume: 27 start-page: 2286 issue: 5 year: 2017 end-page: 2300 ident: CR21 article-title: Fast open-world person re-identification[J] publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2740564 – volume: 29 start-page: 2568 issue: 6 year: 2017 end-page: 2573 ident: CR20 article-title: High-throughput design of non-oxide p-type transparent conducting materials: data mining, search strategy, and identification of boron phosphide[J] publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b04663 – volume: 82 start-page: 56 issue: 2 year: 2016 end-page: 67 ident: CR8 article-title: Using eye-tracker to compare search patterns between experienced and novice workers for site hazard identification[J] publication-title: Saf Sci doi: 10.1016/j.ssci.2015.08.008 – volume: 171 start-page: 435 issue: 2 year: 2018 end-page: 446 ident: CR2 article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms[J] publication-title: Sol Energy doi: 10.1016/j.solener.2018.06.092 – volume: 78 start-page: 306 issue: 4 year: 2014 ident: 6333_CR7 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.10.060 – volume: 93 start-page: 1515 issue: 1 year: 2015 ident: 6333_CR1 publication-title: Energy doi: 10.1016/j.energy.2015.08.019 – volume: 69 start-page: 94 issue: 3 year: 2018 ident: 6333_CR5 publication-title: Intelligence doi: 10.1016/j.intell.2018.05.006 – volume: 32 start-page: 156 issue: 3 year: 2014 ident: 6333_CR17 publication-title: Digital Signal Process doi: 10.1016/j.dsp.2014.05.008 – volume: 52 start-page: 168 issue: 1 year: 2015 ident: 6333_CR14 publication-title: Am Educ Res J doi: 10.3102/0002831214549453 – volume: 27 start-page: 2286 issue: 5 year: 2017 ident: 6333_CR21 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2740564 – volume: 44 start-page: 133 issue: 5 year: 2017 ident: 6333_CR4 publication-title: Labour Econ doi: 10.1016/j.labeco.2016.12.008 – volume: 34 start-page: 45 issue: 1 year: 2019 ident: 6333_CR18 publication-title: Eur J Psychol Edu doi: 10.1007/s10212-017-0361-x – volume: 82 start-page: 56 issue: 2 year: 2016 ident: 6333_CR8 publication-title: Saf Sci doi: 10.1016/j.ssci.2015.08.008 – volume: 280 start-page: 252 issue: 1 year: 2016 ident: 6333_CR10 publication-title: Radiology doi: 10.1148/radiol.2016150409 – volume: 29 start-page: 2568 issue: 6 year: 2017 ident: 6333_CR20 publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b04663 – volume: 42 start-page: 2538 issue: 5 year: 2015 ident: 6333_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.040 – volume: 53 start-page: 677 issue: 7 year: 2016 ident: 6333_CR15 publication-title: Psychol Sch doi: 10.1002/pits.21940 – volume: 58 start-page: 1 issue: 3 year: 2016 ident: 6333_CR3 publication-title: J Sch Psychol doi: 10.1016/j.jsp.2016.06.001 – volume: 14 start-page: 3027 issue: 8 year: 2015 ident: 6333_CR11 publication-title: J Proteome Res doi: 10.1021/pr501173s – volume: 45 start-page: 250 issue: 2 year: 2016 ident: 6333_CR19 publication-title: Sch Psychol Rev doi: 10.17105/SPR45-2.250-267 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 6333_CR6 publication-title: Nat Commun doi: 10.1038/s41467-018-07882-8 – volume: 108 start-page: 1193 issue: 8 year: 2016 ident: 6333_CR12 publication-title: J Edu Psychol doi: 10.1037/edu0000125 – volume: 45 start-page: 553 issue: 3 year: 2014 ident: 6333_CR13 publication-title: Rand J Econ doi: 10.1111/1756-2171.12062 – volume: 171 start-page: 435 issue: 2 year: 2018 ident: 6333_CR2 publication-title: Sol Energy doi: 10.1016/j.solener.2018.06.092 – volume: 49 start-page: 357 issue: 4 year: 2016 ident: 6333_CR16 publication-title: Psihologija doi: 10.2298/PSI1604357M – volume: 39 start-page: 145 issue: 2 year: 2014 ident: 6333_CR22 publication-title: Contemp Edu Psychol doi: 10.1016/j.cedpsych.2014.03.004 |
| SSID | ssj0004685 |
| Score | 2.3321252 |
| Snippet | In order to improve the effect of college student performance prediction, based on machine learning and neural network algorithms, this paper improves the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9369 |
| SubjectTerms | Algorithms Artificial Intelligence Colleges & universities Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Data processing Image Processing and Computer Vision Machine learning Neural networks Performance prediction Probability and Statistics in Computer Science S.I.: AI-based Web Information Processing Similarity Special Issue on AI-based Web Information Processing |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2iEjjPJwJIUTFgKoOgCqWKLHjUqlNShMY-e3cOU4DSHRBipckPlu5c-7h832EnAtHsSRU4J14PLRc35VW6KrY8nnsClBXqdKF558fgsGAj0bh0ATcCpNWWf8T9Y9a5gJj5FegSMCWD8Cdu56_WYgahburBkJjnWxglQSEbhh6L9_ORWpITvBgMLvHZebQjD46h_FQuIvNZ4xZ_KdiaqzNXxukWu_02_-d8Q7ZNhYnvalEZJespdkeaddoDtQs7n3yWSfh0TyjYBbSiY436PAhrdI-aK7oTGdfptTATYxpnEmKVTFhjKzKKafxdAwTKV9nRU1rvsANIRQCpNH0BVppNcQBeerfPd7eWwadwRKwbEsrsBPH4zZTDPRbHEuQBlsEifClw-ASXiCY4IqBP5JI8Hl5aMc-T5JQxk7qwTc_JK0sz9IjQgMZINh1wBNbutLrceVw0YPOSthCcN4hvZo1kTClyxFBYxotiy5rdkY2NmRnBH0uln3mVeGOlW93ax5GZhEXUcPADrmspaB5_De149XUTsiWg4codCynS1rl4j09JZvio5wUizMtwl-S6ffK priority: 102 providerName: ProQuest |
| Title | Research on the improvement effect of machine learning and neural network algorithms on the prediction of learning achievement |
| URI | https://link.springer.com/article/10.1007/s00521-021-06333-8 https://www.proquest.com/docview/2664957046 |
| Volume | 34 |
| WOSCitedRecordID | wos000675747400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TsMw8AQtAwvlKQql8sAGkdI4D2cE1IoBVVWBqmKJEjsuldqkSgMj387ZSVpAgARSPOXuHPns3MP3ADjnlqSRL9E6cZhv2K4tDN-WoeGy0OYormKpC8-P7rx-n43H_qBMCltW0e7VlaT-U6-S3ZQHE01fNVxKqcE2oY7ijqmGDcP70YdsSN2IE-0WBWnTMlXmexqfxdFax_xyLaqlTa_xv-_chZ1SuyRXxXbYg4042YdG1bmBlAf5AN6qgDuSJgRVQDLVvgXtKiRFiAdJJZnrSMuYlK0lJiRMBFEVMHGOpIgfJ-FskmbT_Hm-rGgtMnX5oxiuaKxxkVZcTHEIj73uw82tUXZiMDge0dzwzMhymEklRVkWhgI5b3Iv4q6wKD7c8TjlTFK0PSKB9i3zzdBlUeSL0IodXIUjqCVpEh8D8YSnGlt7LDKFLZwOkxbjHUSW3OScsSZ0KoYEvCxTrrplzIJVgWW9wIGphlrgAHEuVjiLokjHr9Ctis9BeWCXAeopaCp6uHmacFnxdf36Z2onfwM_hW1LJVBoP04Lann2Ep_BFn_Np8usDfXrbn8wbMPmwHlq6239DilX8Bg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBb34Ft_moCctdtNXehARHyiuiwcV8VLbpFFBu-vuqnjxJ_kbnUkbVwW9eRDaS9tMSPplMjOZB8CK5NrLYo3aSSBixw995cS-Tp1QpL7E7SrXJvH8eT1qNMTFRXzSB282FobcKi1PNIxaNSXZyDdwI0FZPkJ1bqv14FDVKDpdtSU0Slgc5S_PqLJ1Ng938f-ucr6_d7pz4FRVBRyJcOs6kZvxQLie9pAvp6nCUbgyymSouIeXDCLpSaE9lKMzhbqaiN00FFkWq5TnQUgGUGT5A77PXVpFJ8HlpzhMUwIUNSbyJvK9KkjHhOqR_RWf0o00PEd83Qh70u23A1mzz-2P_rcZGoORSqJm2-USGIe-vJiAUVutglXMaxJerZMhaxYMxV52a-wpxjzKSrcW1tTs3niX5qwqp3HN0kIxyvqJfRSlzzxL765x4N2b-46l1WrTgReBnGj02iKtvOxiCs7-ZBamob9oFvkMsEhFVMw7EpmrfBXUhOZC1rCxlq6UQsxCzUIhkVVqdqoQcpd8JJU28Elcugk-CbZZ-2jTKhOT_Pr1gsVMUjGpTtIDzCysW9T1Xv9Mbe53asswdHB6XE_qh42jeRjmFDBi7FYL0N9tP-aLMCifured9pJZPgyu_hqN73z5VOU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah5807KuaZv0UdShOMZAHXsradLMwdaNrvro3-4lbbcpKojQPDV3LcmFu9_lPhA6F44iUaAAnXgssFzflVbgKm75jLsC1FWsTOH5Xpt2OqzfD7pLWfwm2r28ksxzGnSVpiRrTKVqzBPftDcTYLAePiHEYqtozdWB9BqvP_aWMiNNU07AMHqmS4q0me95fFZNC3vzyxWp0Tyt6v__eRttFVYnvsrFZAetxMkuqpYdHXBxwPfQexmIhycJBtMQD43PwbgQcR76gScKj00EZoyLlhMDzBOJdWVM-EaSx5VjPhpM0mH2Mp6VvKapvhTSgqB5LGiBV5x_Yh89t26fru-sokODJeDoZha1I8djNlEEdBznEiTCFjQSvnQIPMKjggimCGCSSALuZYHNfRZFgeRO7MEqHKBKMkniQ4SppLrhNWWRLV3pNZlymGgCsRK2EIzVULPcnFAU5ct1F41ROC-8bBY4tPXQCxwCzcWcZpoX7_h1dr3c87A4yLMQ7BeAkBQEqYYuyz1evP6Z29Hfpp-hje5NK2zfdx6O0aajcyyMq6eOKln6Gp-gdfGWDWfpqZHvD0Q4-UY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+improvement+effect+of+machine+learning+and+neural+network+algorithms+on+the+prediction+of+learning+achievement&rft.jtitle=Neural+computing+%26+applications&rft.au=Su%2C+Yingying&rft.au=Wang%2C+Shengxu&rft.au=Li%2C+Yi&rft.date=2022-06-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=34&rft.issue=12&rft.spage=9369&rft.epage=9383&rft_id=info:doi/10.1007%2Fs00521-021-06333-8&rft.externalDocID=10_1007_s00521_021_06333_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |