A novel higher-order efficient computational method for pricing European and Asian options
In this article, we present a fourth-order accurate numerical method for solving generalized Black-Scholes PDE describing European and Asian options. Initially, we discretize the time derivative by the Crank-Nicolson scheme, and then the resultant semi-discrete problem by the central difference sche...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 99; H. 3; S. 1127 - 1159 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this article, we present a fourth-order accurate numerical method for solving generalized Black-Scholes PDE describing European and Asian options. Initially, we discretize the time derivative by the Crank-Nicolson scheme, and then the resultant semi-discrete problem by the central difference scheme on uniform meshes. In order to enhance the order of convergence of the proposed scheme, we employ the Richardson extrapolation method, by using two different meshes to solve the fully discrete problem. The stability and convergence are studied. To validate the proposed technique, several numerical experiments are carried out. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-024-01909-6 |