Attention-based encoder-decoder networks for workflow recognition

Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of “Industry 4.0”. However, monitoring the workflow of both workers and machines in production procedure is quite difficult in complex industrial e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 80; číslo 28-29; s. 34973 - 34995
Hlavní autoři: Zhang, Min, Hu, Haiyang, Li, Zhongjin, Chen, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2021
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Behavior recognition is a fundamental yet challenging task in intelligent surveillance system, which plays an increasingly important role in the process of “Industry 4.0”. However, monitoring the workflow of both workers and machines in production procedure is quite difficult in complex industrial environments. In this paper, we propose a novel workflow recognition framework to recognize the behavior of working subjects based on the well-designed encoder-decoder structure. Namely, attention-based workflow recognition framework, termed as AWR. To improve the accuracy of workflow recognition, a temporal attention cell ( AttCell ) is introduced to draw dynamic attention distribution in the last stage of the framework. In addition, a Rough-to-Refine phase localization model is exploited to improve localization accuracy, which can effectively identify the boundaries of a specific phase instance in long untrimmed videos. Comprehensive experiments indicate a 1.4% mAP@IoU= 0.4 boost on THUMOS’14 dataset and a 3.4% mAP@IoU= 0.4 boost on hand-crafted workflow dataset detection challenge compared to the advanced GTAN pipeline respectively. More remarkably, the effectiveness of the workflow recognition system is validated in a real-world production scenario.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-021-10633-5