Double feature selection algorithm based on low-rank sparse non-negative matrix factorization

Recently, many feature selection algorithms based on non-negative matrix factorization have been proposed. However, many of these algorithms only consider unilateral information about global or local geometric structure normally. To this end, this paper proposes a new feature selection algorithm cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics Jg. 11; H. 8; S. 1891 - 1908
Hauptverfasser: Shang, Ronghua, Song, Jiuzheng, Jiao, Licheng, Li, Yangyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2020
Springer Nature B.V
Schlagworte:
ISSN:1868-8071, 1868-808X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!