Big-But-Biased Data Analytics for Air Quality

Air pollution is one of the big concerns for smart cities. The problem of applying big data analytics to sampling bias in the context of urban air quality is studied in this paper. A nonparametric estimator that incorporates kernel density estimation is used. When ignoring the biasing weight functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 9; H. 9; S. 1551
Hauptverfasser: Borrajo, Laura, Cao, Ricardo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2020
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air pollution is one of the big concerns for smart cities. The problem of applying big data analytics to sampling bias in the context of urban air quality is studied in this paper. A nonparametric estimator that incorporates kernel density estimation is used. When ignoring the biasing weight function, a small-sized simple random sample of the real population is assumed to be additionally observed. The general parameter considered is the mean of a transformation of the random variable of interest. A new bootstrap algorithm is used to approximate the mean squared error of the new estimator. Its minimization leads to an automatic bandwidth selector. The method is applied to a real data set concerning the levels of different pollutants in the urban air of the city of A Coruña (Galicia, NW Spain). Estimations for the mean and the cumulative distribution function of the level of ozone and nitrogen dioxide when the temperature is greater than or equal to 30 ∘C based on 15 years of biased data are obtained.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9091551