Small Bergman-Orlicz and Hardy-Orlicz spaces, and their composition operators

We show that the weighted Bergman-Orlicz space A α ψ coincides with some weighted Banach space of holomorphic functions if and only if the Orlicz function ψ satisfies the so-called Δ 2 -condition. In addition we prove that this condition characterizes those A α ψ on which every composition operator...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematische Zeitschrift Ročník 293; číslo 3-4; s. 1287 - 1314
Hlavní autor: Charpentier, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Témata:
ISSN:0025-5874, 1432-1823
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that the weighted Bergman-Orlicz space A α ψ coincides with some weighted Banach space of holomorphic functions if and only if the Orlicz function ψ satisfies the so-called Δ 2 -condition. In addition we prove that this condition characterizes those A α ψ on which every composition operator is bounded or order bounded into the Orlicz space L α ψ . This provides us with estimates of the norm and the essential norm of composition operators on such spaces. We also prove that when ψ satisfies the Δ 2 -condition, a composition operator is compact on A α ψ if and only if it is order bounded into the so-called Morse–Transue space M α ψ . Our results stand in the unit ball of C N .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-019-02240-w