Small Bergman-Orlicz and Hardy-Orlicz spaces, and their composition operators
We show that the weighted Bergman-Orlicz space A α ψ coincides with some weighted Banach space of holomorphic functions if and only if the Orlicz function ψ satisfies the so-called Δ 2 -condition. In addition we prove that this condition characterizes those A α ψ on which every composition operator...
Gespeichert in:
| Veröffentlicht in: | Mathematische Zeitschrift Jg. 293; H. 3-4; S. 1287 - 1314 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0025-5874, 1432-1823 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We show that the weighted Bergman-Orlicz space
A
α
ψ
coincides with some weighted Banach space of holomorphic functions if and only if the Orlicz function
ψ
satisfies the so-called
Δ
2
-condition. In addition we prove that this condition characterizes those
A
α
ψ
on which every composition operator is bounded or order bounded into the Orlicz space
L
α
ψ
. This provides us with estimates of the norm and the essential norm of composition operators on such spaces. We also prove that when
ψ
satisfies the
Δ
2
-condition, a composition operator is compact on
A
α
ψ
if and only if it is order bounded into the so-called Morse–Transue space
M
α
ψ
. Our results stand in the unit ball of
C
N
. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5874 1432-1823 |
| DOI: | 10.1007/s00209-019-02240-w |