Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions

We are concerned in this paper with minimax fractional programs whose objective functions are the maximum of finite ratios of difference of convex functions, with constraints also described by difference of convex functions. Like Dinkelbach-type algorithms, the method of centers for generalized frac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 187; H. 1; S. 105 - 132
Hauptverfasser: Boufi, Karima, El Haffari, Mostafa, Roubi, Ahmed
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2020
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned in this paper with minimax fractional programs whose objective functions are the maximum of finite ratios of difference of convex functions, with constraints also described by difference of convex functions. Like Dinkelbach-type algorithms, the method of centers for generalized fractional programs fails to work for such problems, since the parametric subproblems may be nonconvex, whereas the latters need a global optimal solution for these subproblems. We first give necessary optimality conditions for these problems, by means of convex analysis tools, and then extend the last method to solve such programs. The method is based on solving a sequence of parametric convex problems. We show that every cluster point of the sequence of optimal solutions of these subproblems satisfies necessary optimality conditions of Karush–Kuhn–Tucker criticality type.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01738-2