Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions
We are concerned in this paper with minimax fractional programs whose objective functions are the maximum of finite ratios of difference of convex functions, with constraints also described by difference of convex functions. Like Dinkelbach-type algorithms, the method of centers for generalized frac...
Saved in:
| Published in: | Journal of optimization theory and applications Vol. 187; no. 1; pp. 105 - 132 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We are concerned in this paper with minimax fractional programs whose objective functions are the maximum of finite ratios of difference of convex functions, with constraints also described by difference of convex functions. Like Dinkelbach-type algorithms, the method of centers for generalized fractional programs fails to work for such problems, since the parametric subproblems may be nonconvex, whereas the latters need a global optimal solution for these subproblems. We first give necessary optimality conditions for these problems, by means of convex analysis tools, and then extend the last method to solve such programs. The method is based on solving a sequence of parametric convex problems. We show that every cluster point of the sequence of optimal solutions of these subproblems satisfies necessary optimality conditions of Karush–Kuhn–Tucker criticality type. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-020-01738-2 |