A comparison study on anomaly detection methods in manufacturing process monitoring with X-ray images

Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on represent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent manufacturing Ročník 36; číslo 6; s. 4389 - 4409
Hlavní autoři: Huang, Congfang, Blondheim, David, Zhou, Shiyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2025
Springer Nature B.V
Témata:
ISSN:0956-5515, 1572-8145
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Process monitoring and anomaly detection in manufacturing production systems are of vital importance in the consistency, reliability, and quality of manufacturing operations, which motivates the development of a large number of anomaly detection methods. In this work, a comparison study on representative unsupervised X-ray image based anomaly detection methods is conducted. Statistical, physical, and deep learning based dimension reduction methods and different anomaly detection criteria are considered and compared. Case studies on real-world X-ray image data with simulated anomalies and real anomalies are both carried out. Grey level co-occurrence matrix with Hotelling T 2 statistic as detection criteria achieves the best performance on the simulated anomalies case with an overall detection accuracy of 96%. Principal component analysis with reconstruction error as criteria obtains the highest detection rate of 90.6% in the real anomalies case. Considering the ever-growing availability of image data in intelligent manufacturing processes, this study will provide very useful knowledge and find a broad audience.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0956-5515
1572-8145
DOI:10.1007/s10845-024-02435-x