Solving Multi-Objective Resource Allocation Problem Using Multi-Objective Binary Artificial Bee Colony Algorithm
Resource allocation is the optimal distribution in a limited number of resources available for certain activities. The allocation of the resources for a large number of activities requires exponentially multiplying a computation cost. Therefore, the resource allocation problem is known as NP-Hard pr...
Uložené v:
| Vydané v: | Arabian journal for science and engineering (2011) Ročník 46; číslo 9; s. 8535 - 8547 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Resource allocation is the optimal distribution in a limited number of resources available for certain activities. The allocation of the resources for a large number of activities requires exponentially multiplying a computation cost. Therefore, the resource allocation problem is known as NP-Hard problem in the literature. In this study, a multi-objective binary artificial bee colony algorithm has been proposed for solving the multi-objective resource allocation problems. The proposed algorithm has benefited from the robust structure and easy implementation properties of the artificial bee colony algorithm. The contribution is to introduce the multi-objective version of the artificial bee colony algorithm with advanced local search and binary format using transfer functions. The multi-objective binary artificial bee colony algorithm has been improved as two versions using sigmoid and hyperbolic tangent transfer functions to be able to search in the binary search space. With the proposed algorithms, the multi-objective resource allocation problems in the literature are solved, and the algorithms are compared with other algorithms that develop for the same problems. The results obtained show that the proposed algorithms give effective results on the problem. Especially, in large-scale problems, higher accuracy values are reached with a smaller number of evaluations. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2193-567X 1319-8025 2191-4281 |
| DOI: | 10.1007/s13369-021-05521-x |