A Sequential Quadratic Programming Method for Constrained Multi-objective Optimization Problems

In this article, a globally convergent sequential quadratic programming (SQP) method is developed for multi-objective optimization problems with inequality type constraints. A feasible descent direction is obtained using a linear approximation of all objective functions as well as constraint functio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied mathematics & computing Ročník 64; číslo 1-2; s. 379 - 397
Hlavní autori: Ansary, Md Abu Talhamainuddin, Panda, Geetanjali
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Predmet:
ISSN:1598-5865, 1865-2085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, a globally convergent sequential quadratic programming (SQP) method is developed for multi-objective optimization problems with inequality type constraints. A feasible descent direction is obtained using a linear approximation of all objective functions as well as constraint functions. The sub-problem at every iteration of the sequence has feasible solution. A non-differentiable penalty function is used to deal with constraint violations. A descent sequence is generated which converges to a critical point under the Mangasarian–Fromovitz constraint qualification along with some other mild assumptions. The method is compared with a selection of existing methods on a suitable set of test problems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-020-01359-y