Numerical solutions for distributed-order fractional optimal control problems by using generalized fractional-order Chebyshev wavelets

This paper studies a numerical approach based on generalized fractional-order Chebyshev wavelets for solving distributed-order fractional optimal control problems (DO-FOCPs). The exact value of the Riemann–Liouville fractional integral operator of the given wavelets is computed by applying regulariz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear dynamics Ročník 108; číslo 1; s. 265 - 277
Hlavní autori: Ghanbari, Ghodsieh, Razzaghi, Mohsen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.03.2022
Springer Nature B.V
Predmet:
ISSN:0924-090X, 1573-269X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies a numerical approach based on generalized fractional-order Chebyshev wavelets for solving distributed-order fractional optimal control problems (DO-FOCPs). The exact value of the Riemann–Liouville fractional integral operator of the given wavelets is computed by applying regularized beta function. The exact formula and collocation method are applied to transform the DO-FOCP to a new optimization problem. This new problem can be solved by the existing methods. Four examples are given to show the advantage of this method in comparison with the existing methods in the literature.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-07195-4