Secure and Privacy-Preserving Framework for IoT-Enabled Smart Grid Environment
Due to recent technical breakthroughs in wireless communication and the Internet of Things (IoT), the smart grid (SG) has been recognized as a next-generation network for intelligent and efficient electric power transmission. Electric vehicle charging is becoming one of the most popular SG applicati...
Uloženo v:
| Vydáno v: | Arabian journal for science and engineering (2011) Ročník 49; číslo 3; s. 3063 - 3078 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Due to recent technical breakthroughs in wireless communication and the Internet of Things (IoT), the smart grid (SG) has been recognized as a next-generation network for intelligent and efficient electric power transmission. Electric vehicle charging is becoming one of the most popular SG application. However, in SG environment the communication between a vehicle user and smart meter is mostly performed using insecure channel for managing demand response during peak hours. This raises serious security and privacy issues. Motivated from the aforementioned challenges, this paper presents a secure and privacy-preserving framework for IoT-enabled SG environment. The proposed framework first uses a secure mutual authentication scheme to register and exchange session key among SG participants. Second, a deep learning method that uses a stacked sparse denoising autoencoder to convert data into a new encoded format is suggested. The attention-based truncated long short-term memory uses this modified data to identify intrusions. The proposed blockchain architecture uses the proof of authentication consensus mechanism to propagate regular transactions in order to validate data integrity and prevent data poisoning attacks. The suggested framework outperforms several current state-of-the-art solutions in terms of security and numerical discoveries. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2193-567X 1319-8025 2191-4281 |
| DOI: | 10.1007/s13369-023-07900-y |