On the Stable Difference Schemes for the Schrödinger Equation with Time Delay
In the present paper, the first and second order of accuracy difference schemes for the approximate solutions of the initial value problem for Schrödinger equation with time delay in a Hilbert space are presented. The theorem on stability estimates for the solutions of these difference schemes is es...
Uloženo v:
| Vydáno v: | Journal of computational methods in applied mathematics Ročník 20; číslo 1; s. 27 - 38 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Minsk
De Gruyter
01.01.2020
Walter de Gruyter GmbH |
| Témata: | |
| ISSN: | 1609-4840, 1609-9389 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the present paper, the first and second order of accuracy difference schemes for the approximate solutions of the initial value problem for Schrödinger equation with time delay in a Hilbert space are presented. The theorem on stability estimates for the solutions of these difference schemes is established. The application of theorems on stability of difference schemes for the approximate solutions of the initial boundary value problems for Schrödinger partial differential equation is provided. Additionally, some illustrative numerical results are presented. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1609-4840 1609-9389 |
| DOI: | 10.1515/cmam-2018-0107 |