Geodesic Discrete Global Grid Systems

In recent years, a number of data structures for global geo-referenced data sets have been proposed based on regular, multi-resolution partitions of polyhedra. We present a survey of the most promising of such systems, which we call Geodesic Discrete Global Grid Systems (Geodesic DGGSs). We show tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cartography and geographic information science Ročník 30; číslo 2; s. 121 - 134
Hlavní autoři: Sahr, Kevin, White, Denis, Kimerling, A. Jon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.04.2003
Taylor & Francis Group LLC
Témata:
ISSN:1523-0406, 1545-0465
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, a number of data structures for global geo-referenced data sets have been proposed based on regular, multi-resolution partitions of polyhedra. We present a survey of the most promising of such systems, which we call Geodesic Discrete Global Grid Systems (Geodesic DGGSs). We show that Geodesic DGGS alternatives can be constructed by specifying five substantially independent design choices: a base regular polyhedron, a fixed orientation of the base regular polyhedron relative to the Earth, a hierarchical spatial partitioning method defined symmetrically on a face (or set of faces) of the base regular polyhedron, a method for transforming that planar partition to the corresponding spherical/ellipsoidal surface, and a method for assigning point representations to grid cells. The majority of systems surveyed are based on the icosahedron, use an aperture 4 triangle or hexagon partition, and are either created directly on the surface of the sphere or by using an equal-area transformation. An examination of the design choice options leads us to the construction of the Icosahedral Snyder Equal Area aperture 3 Hexagon (ISEA3H) Geodesic DGGS.
ISSN:1523-0406
1545-0465
DOI:10.1559/152304003100011090