Density peaks algorithm based on information entropy and merging strategy for power load curve clustering

To solve the problems of density peaks clustering (DPC) algorithm sensitive to cutoff distance and subjectivity of clustering center selection, we propose an improved density peaks algorithm based on information entropy and merging strategy (DPC-IEMS) for realizing power load curve clustering. First...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 80; číslo 7; s. 8801 - 8832
Hlavní autoři: Yang, Yumeng, Wang, Li, Cheng, Zizhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2024
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To solve the problems of density peaks clustering (DPC) algorithm sensitive to cutoff distance and subjectivity of clustering center selection, we propose an improved density peaks algorithm based on information entropy and merging strategy (DPC-IEMS) for realizing power load curve clustering. First, a cutoff distance optimization method based on information entropy is proposed. This method uses sparrow search algorithm (SSA) to find the minimum value of information entropy about the product of local density and relative distance to calculate the optimal cutoff distance suitable for the load datasets. Then, a merging strategy is proposed to realize the adaptive selection of clustering centers. This strategy first generates a large number of initial sub-clusters by DPC, and then merges the sub-clusters using the fusion condition until the final iteration condition is satisfied. The performance of DPC-IEMS algorithm is evaluated on the U.S. load datasets and the Chinese load datasets, and the effectiveness and practicality of DPC-IEMS algorithm for power load curve clustering are fully demonstrated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-023-05793-0