A multi-objective optimization algorithm for feature selection problems
Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks...
Saved in:
| Published in: | Engineering with computers Vol. 38; no. Suppl 3; pp. 1845 - 1863 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.08.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0177-0667, 1435-5663 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks Optimization (HHO) algorithm has been multiplied, and in the second solution, the Fruitfly Optimization Algorithm (FOA) has been multiplied, and in the third solution, these two solutions are hydride and are named MOHHOFOA. The results were tested with MOPSO, NSGA-II, BGWOPSOFS and B-MOABC algorithms for FS on 15 standard data sets with mean, best, worst, standard deviation (STD) criteria. The Wilcoxon statistical test was also used with a significance level of 5% and the Bonferroni–Holm method to control the family-wise error rate. The results are shown in the Pareto front charts, indicating that the proposed solutions' performance on the data set is promising. |
|---|---|
| AbstractList | Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks Optimization (HHO) algorithm has been multiplied, and in the second solution, the Fruitfly Optimization Algorithm (FOA) has been multiplied, and in the third solution, these two solutions are hydride and are named MOHHOFOA. The results were tested with MOPSO, NSGA-II, BGWOPSOFS and B-MOABC algorithms for FS on 15 standard data sets with mean, best, worst, standard deviation (STD) criteria. The Wilcoxon statistical test was also used with a significance level of 5% and the Bonferroni–Holm method to control the family-wise error rate. The results are shown in the Pareto front charts, indicating that the proposed solutions' performance on the data set is promising. |
| Author | Gharehchopogh, Farhad Soleimanian Abdollahzadeh, Benyamin |
| Author_xml | – sequence: 1 givenname: Benyamin surname: Abdollahzadeh fullname: Abdollahzadeh, Benyamin organization: Department of Computer Engineering, Urmia Branch, Islamic Azad University – sequence: 2 givenname: Farhad Soleimanian orcidid: 0000-0003-1588-1659 surname: Gharehchopogh fullname: Gharehchopogh, Farhad Soleimanian email: bonab.farhad@gmail.com organization: Department of Computer Engineering, Urmia Branch, Islamic Azad University |
| BookMark | eNp9kE9LwzAYh4NMcJt-AU8Fz9E3TZs2xzF0EwZe9BzSLJkZbTOTVNBPb7YKgoedAm-e5_3zm6FJ73qN0C2BewJQPQQAyhiGnGAglHHML9CUFLTEJWN0gqZAqgoDY9UVmoWwh0QB8ClaLbJuaKPFrtlrFe2nztwh2s5-y2hdn8l257yN711mnM-MlnHwOgu6PcLp_-Bd0-ouXKNLI9ugb37fOXp7enxdrvHmZfW8XGywooRHXEBdMzAmbxqmy0oyXXEoGsULojgtS7NtmtzUujCyJkQTbmqVaqUysFUml3SO7sa-afDHoEMUezf4Po0UeQWEkYIULFH1SCnvQvDaCGXj6aDopW0FAXGMTYyxiRSbOMUmeFLzf-rB2076r_MSHaWQ4H6n_d9WZ6wfMgaDNA |
| CitedBy_id | crossref_primary_10_1016_j_wear_2024_205340 crossref_primary_10_3390_bdcc6040104 crossref_primary_10_1007_s40747_023_01118_z crossref_primary_10_1016_j_eswa_2024_123977 crossref_primary_10_1016_j_tsep_2024_103186 crossref_primary_10_3390_a15120482 crossref_primary_10_1016_j_swevo_2025_101914 crossref_primary_10_3390_app13074356 crossref_primary_10_1007_s10462_023_10451_1 crossref_primary_10_3390_app122110760 crossref_primary_10_1007_s44443_025_00078_3 crossref_primary_10_1016_j_aei_2024_102590 crossref_primary_10_1109_ACCESS_2023_3333000 crossref_primary_10_1016_j_iswa_2023_200202 crossref_primary_10_1016_j_knosys_2023_111352 crossref_primary_10_1016_j_dajour_2025_100598 crossref_primary_10_1007_s00521_023_08812_6 crossref_primary_10_1007_s11831_021_09624_4 crossref_primary_10_1016_j_cpc_2025_109534 crossref_primary_10_1038_s41598_022_09126_8 crossref_primary_10_1016_j_nexres_2025_100639 crossref_primary_10_1016_j_eswa_2024_124936 crossref_primary_10_3390_a17090416 crossref_primary_10_32604_cmc_2024_055080 crossref_primary_10_1007_s13198_022_01650_0 crossref_primary_10_1007_s10462_024_11032_6 crossref_primary_10_1016_j_asoc_2024_111479 crossref_primary_10_1016_j_cosrev_2025_100805 crossref_primary_10_1016_j_applthermaleng_2025_126661 crossref_primary_10_1016_j_cie_2025_111514 crossref_primary_10_1007_s11042_022_12409_x crossref_primary_10_1016_j_knosys_2023_110494 crossref_primary_10_1007_s11227_024_06713_6 crossref_primary_10_1007_s10586_021_03304_5 crossref_primary_10_1016_j_swevo_2023_101415 crossref_primary_10_1007_s10921_023_01024_x crossref_primary_10_1002_cjce_25417 crossref_primary_10_1007_s00366_021_01554_w crossref_primary_10_1016_j_aej_2025_05_071 crossref_primary_10_3390_sym17040572 crossref_primary_10_1016_j_chemolab_2024_105295 crossref_primary_10_1007_s40747_022_00852_0 crossref_primary_10_3390_rs15174178 crossref_primary_10_1016_j_tsep_2024_102819 crossref_primary_10_1007_s11227_022_04395_6 crossref_primary_10_3390_a17080355 crossref_primary_10_1016_j_cosrev_2023_100559 crossref_primary_10_1016_j_aei_2022_101732 crossref_primary_10_1016_j_asoc_2025_113413 crossref_primary_10_3390_e25081128 crossref_primary_10_1038_s41598_024_75842_y crossref_primary_10_1016_j_knosys_2022_109989 crossref_primary_10_1109_TEVC_2023_3284867 crossref_primary_10_1109_TMAG_2025_3554192 crossref_primary_10_1016_j_heliyon_2024_e31655 crossref_primary_10_1111_exsy_13293 crossref_primary_10_3390_app122110722 crossref_primary_10_1016_j_tws_2025_113453 crossref_primary_10_1007_s13132_024_02083_9 crossref_primary_10_1007_s13042_025_02648_3 crossref_primary_10_1016_j_knosys_2023_110462 crossref_primary_10_3390_biomimetics10080537 crossref_primary_10_1109_ACCESS_2024_3354714 crossref_primary_10_1007_s10489_022_03808_6 crossref_primary_10_1007_s00500_023_07930_6 crossref_primary_10_1007_s00354_022_00158_2 crossref_primary_10_1007_s11042_023_17329_y crossref_primary_10_1371_journal_pone_0286433 crossref_primary_10_1007_s00521_022_07391_2 crossref_primary_10_1007_s10922_022_09653_9 crossref_primary_10_1007_s12065_023_00892_6 crossref_primary_10_7717_peerj_cs_1068 crossref_primary_10_1007_s10614_024_10626_0 crossref_primary_10_1007_s10586_025_05465_z crossref_primary_10_3390_pr12020395 crossref_primary_10_1016_j_ins_2023_119945 crossref_primary_10_3390_app15158710 crossref_primary_10_1007_s42235_022_00223_y crossref_primary_10_1007_s11831_021_09698_0 crossref_primary_10_1016_j_swevo_2025_102070 crossref_primary_10_1109_ACCESS_2024_3461164 crossref_primary_10_1016_j_fuel_2022_127249 crossref_primary_10_3390_computers11110161 crossref_primary_10_1016_j_cie_2025_111022 crossref_primary_10_1016_j_eswa_2023_122701 crossref_primary_10_4108_ew_7188 crossref_primary_10_1007_s12065_024_00917_8 crossref_primary_10_3390_math13172799 crossref_primary_10_1007_s00500_022_07805_2 crossref_primary_10_7717_peerj_cs_2023 crossref_primary_10_1007_s11831_025_10240_9 crossref_primary_10_1016_j_asej_2023_102245 crossref_primary_10_1515_ijeeps_2025_0184 crossref_primary_10_1016_j_engappai_2023_106555 crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_1016_j_adhoc_2024_103485 crossref_primary_10_3390_math11153312 crossref_primary_10_1007_s42235_023_00359_5 crossref_primary_10_1016_j_asoc_2023_110268 crossref_primary_10_1007_s12559_023_10149_0 crossref_primary_10_1016_j_knosys_2025_113062 crossref_primary_10_1007_s44288_025_00131_8 |
| Cites_doi | 10.1016/j.compbiolchem.2017.06.002 10.1016/j.knosys.2014.02.021 10.1016/j.compeleceng.2018.02.015 10.1109/ACCESS.2019.2906757 10.1007/s10462-020-09860-3 10.1016/j.asoc.2016.11.023 10.1007/s10462-017-9543-9 10.1109/ACCESS.2019.2946664 10.1109/TSMCB.2012.2227469 10.1109/TGRS.2019.2958812 10.1007/s00366-019-00892-0 10.1016/j.matdes.2011.03.077 10.1016/j.asoc.2020.106347 10.1016/j.knosys.2017.07.005 10.1109/GSIS.2017.8077713 10.1016/j.neucom.2017.04.053 10.1016/j.ins.2017.09.028 10.1007/s10044-018-0695-2 10.1007/978-981-15-3425-6_48 10.1109/WCICA.2018.8630556 10.1016/j.asoc.2020.106620 10.1109/TCYB.2016.2638902 10.1016/j.asoc.2019.106041 10.1016/j.asoc.2020.106442 10.1109/SIBGRAPI.2012.47 10.1007/s12652-019-01569-8 10.1016/j.knosys.2011.07.001 10.1109/TEVC.2016.2634625 10.1016/j.swevo.2017.06.001 10.3390/rs11121421 10.1016/j.apm.2017.08.013 10.1109/4235.996017 10.1016/j.ins.2019.08.040 10.1016/j.swevo.2019.03.004 10.1007/978-981-10-7566-7_46 10.1109/ACCESS.2020.3000040 10.1016/j.cose.2018.11.005 10.1016/j.knosys.2015.08.010 10.1016/j.eswa.2019.06.044 10.1016/j.knosys.2017.12.031 10.1007/s11042-020-09639-2 10.1080/09720502.2020.1721670 10.1016/j.swevo.2018.08.004 10.1007/s00500-017-2635-2 10.1016/j.future.2019.02.028 10.1016/j.eswa.2018.07.013 10.3233/IDA-194485 10.1002/int.22342 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00366-021-01369-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 1863 |
| ExternalDocumentID | 10_1007_s00366_021_01369_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-408860ff2bb6e57a6e7904bc941c9355fdbb2f8e4fa811e19f8cfdb5cf0dcf2a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 145 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626388400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-0667 |
| IngestDate | Tue Dec 02 16:07:37 EST 2025 Sat Nov 29 06:25:19 EST 2025 Tue Nov 18 22:27:44 EST 2025 Fri Feb 21 02:45:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 3 |
| Keywords | Multiobjective Feature selection Bonferroni–Holm Fruitfly optimization algorithm Family-wise error rate Harris hawks optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-408860ff2bb6e57a6e7904bc941c9355fdbb2f8e4fa811e19f8cfdb5cf0dcf2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1588-1659 |
| PQID | 2701614146 |
| PQPubID | 326339 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2701614146 crossref_citationtrail_10_1007_s00366_021_01369_9 crossref_primary_10_1007_s00366_021_01369_9 springer_journals_10_1007_s00366_021_01369_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20220800 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2022 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | SelvakumarBMuneeswaranKFirefly algorithm based feature selection for network intrusion detectionComput Secur20198114815510.1016/j.cose.2018.11.005 He C-L, et al (2019) Multi-objective feature selection based on artificial bee colony for hyperspectral images. In: international conference on bio-inspired computing: theories and applications. Springer Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. IEEE. BouraouiAJamoussiSBenAyedYA multi-objective genetic algorithm for simultaneous model and feature selection for support vector machinesArtif Intell Rev201850226128110.1007/s10462-017-9543-9 ZhangYBinary differential evolution with self-learning for multi-objective feature selectionInf Sci20205076785399489210.1016/j.ins.2019.08.040 Abd Elaziz M, et al (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput:106347. Abdel-Basset M, Ding W, El-Shahat D (2020) A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev:1–45. AghdamMHKabiriPFeature selection for intrusion detection system using ant colony optimizationInt J Netw Secur2016183420432 WangX-HMulti-objective feature selection based on artificial bee colony: an acceleration approach with variable sample sizeAppl Soft Comput20208810604110.1016/j.asoc.2019.106041 HancerEPareto front feature selection based on artificial bee colony optimizationInf Sci201842246247910.1016/j.ins.2017.09.028 BalachandranMOptimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite designMater Des20123585486210.1016/j.matdes.2011.03.077 LiuYA many-objective evolutionary algorithm using a one-by-one selection strategyIEEE Trans Cybern20174792689270210.1109/TCYB.2016.2638902 Wu L, et al (2018) Multi-objective Fruit Fly Optimization Based on Cloud Model. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE. Benyamin A, Farhad SG, Saeid B (2020) Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int J Intell Syst. Rajamohana S, Umamaheswari K (2018) Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Comput Elect Eng. WuLA new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problemsKnowl Based Syst201814415317310.1016/j.knosys.2017.12.031 Du P, et al (2020) A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting. Appl Soft Comput 96: 106620 AbediMGharehchopoghFSAn improved opposition based learning firefly algorithm with dragonfly algorithm for solving continuous optimization problemsIntell Data Anal202024230933810.3233/IDA-194485 Rodrigues D, de Albuquerque VHC, Papa JP (2020) A multi-objective artificial butterfly optimization approach for feature selection. Appl Soft Comput: 106442 XueBZhangMBrowneWNParticle swarm optimization for feature selection in classification: a multi-objective approachIEEE Trans Cybern20124361656167110.1109/TSMCB.2012.2227469 Gharehchopogh FS, Shayanfar H, Gholizadeh H (22019) A comprehensive survey on symbiotic organisms search algorithms. Artif Intell Rev:1–48. Nakamura RY, et al (2012) BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, Patterns and Images. IEEE. HussainKZhuWSallehMNMLong-term memory HarrisTM hawk optimization for high dimensional and optimal power flow problemsIEEE Access2019714759614761610.1109/ACCESS.2019.2946664 SohrabiMKTajikAMulti-objective feature selection for warfarin dose predictionComput Biol Chem20176912613310.1016/j.compbiolchem.2017.06.002 Ma Q, He Y, Zhou F (2016) Multi-objective fruit fly optimization algorithm for test point selection. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE. HeidariAAHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028 HansRKaurHKaurNOpposition-based Harris Hawks optimization algorithm for feature selection in breast mass classificationJ Interdiscip Math20202319710610.1080/09720502.2020.1721670 Al-TashiQBinary optimization using hybrid grey wolf optimization for feature selectionIEEE Access20197394963950810.1109/ACCESS.2019.2906757 Gharehchopogh FS, Mousavi SK (2019) A new feature selection in email spam detection by particle swarm optimization and fruit fly optimization algorithms. J Comput Knowl Eng 2(2). ZhouRImproved fruit fly optimization Algorithm-based density peak clustering and its applicationsTehnicki vjesnik2017242473480 Zhang Y, et al (2020) Boosted binary Harris hawks optimizer and feature selection. Structure 25:26 ZhangYCost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithmExpert Syst Appl2019137465810.1016/j.eswa.2019.06.044 Wang Q, et al. (2017) Kernel-based fuzzy C-means clustering based on fruit fly optimization algorithm. In: 2017 International Conference on Grey Systems and Intelligent Services (GSIS). IEEE. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier. PanQ-KAn improved fruit fly optimization algorithm for continuous function optimization problemsKnowl Based Syst201462698310.1016/j.knosys.2014.02.021 WanYMulti-objective Hyperspectral Feature Selection Based on Discrete Sine Cosine AlgorithmIEEE Trans Geosci Remote Sens20205853601361810.1109/TGRS.2019.2958812 Alamiedy TA, et al. (2019) Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm. J Ambient Intell Hum Comput:1–22. AmoozegarMMinaei-BidgoliBOptimizing multi-objective PSO based feature selection method using a feature elitism mechanismExpert Syst Appl201811349951410.1016/j.eswa.2018.07.013 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat: 65–70. DebKA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 Rahnema N, Gharehchopogh FS (2020) An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multim Tools Appl:1–26. MengTPanQ-KAn improved fruit fly optimization algorithm for solving the multi-dimensional knapsack problemAppl Soft Comput201750799310.1016/j.asoc.2016.11.023 GongDSunJMiaoZA set-based genetic algorithm for interval many-objective optimization problemsIEEE Trans Evol Comput2016221476010.1109/TEVC.2016.2634625 WangLZhengX-LA knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problemSwarm Evolut Comput201838546310.1016/j.swevo.2017.06.001 Coello CC, Lechuga MS (2002) MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). IEEE. MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053 GhoshMFeature selection using histogram-based multi-objective GA for handwritten Devanagari numeral recognitionIntelligent engineering informatics2018Springer47147910.1007/978-981-10-7566-7_46 AcharyaNSinghSAn IWD-based feature selection method for intrusion detection systemSoft Comput201822134407441610.1007/s00500-017-2635-2 Al-TashiQBinary multi-objective grey wolf optimizer for feature selection in classificationIEEE Access2020810624710626310.1109/ACCESS.2020.3000040 GharehchopoghFSGholizadehHA comprehensive survey: whale Optimization Algorithm and its applicationsSwarm Evolut Comput20194812410.1016/j.swevo.2019.03.004 MitićMChaotic fruit fly optimization algorithmKnowl Based Syst20158944645810.1016/j.knosys.2015.08.010 DuT-SDSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problemsAppl Math Model201855314339373986010.1016/j.apm.2017.08.013 Emary E, Zawbaa HM (2018) Feature selection via Lèvy Antlion optimization. Pattern Anal Appl:1–20. JiaHDynamic harris hawks optimization with mutation mechanism for satellite image segmentationRemote Sens20191112142110.3390/rs11121421 Abbasi A, Firouzi B,Sendur P (2019) On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks. Eng Comput: 1–20. Gauthama RamanMRAn efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machineKnowl Based Syst201713411210.1016/j.knosys.2017.07.005 ChoongSSWongL-PLimCPAn artificial bee colony algorithm with a modified choice function for the Traveling Salesman ProblemSwarm and Evolut Comput20194462263510.1016/j.swevo.2018.08.004 PanW-TA new Fruit Fly Optimization Algorithm: taking the financial distress model as an exampleKnowl Based Syst201226697410.1016/j.knosys.2011.07.001 DuaDand C2017UCI machine learning repositoryGraff ZhouRDensity peak clustering algorithm using knowledge learning-based fruit fly optimizationInt J Comput Appl2018403110 M Mitić (1369_CR13) 2015; 89 1369_CR30 L Wang (1369_CR35) 2018; 38 R Hans (1369_CR18) 2020; 23 1369_CR31 AA Heidari (1369_CR16) 2019; 97 X-H Wang (1369_CR43) 2020; 88 L Wu (1369_CR14) 2018; 144 1369_CR36 1369_CR37 1369_CR38 M Balachandran (1369_CR59) 2012; 35 W-T Pan (1369_CR50) 2012; 26 M Abedi (1369_CR4) 2020; 24 FS Gharehchopogh (1369_CR3) 2019; 48 Y Wan (1369_CR34) 2020; 58 MH Aghdam (1369_CR24) 2016; 18 1369_CR5 1369_CR6 1369_CR7 K Deb (1369_CR53) 2002; 6 Q Al-Tashi (1369_CR54) 2019; 7 1369_CR1 1369_CR2 1369_CR21 1369_CR23 T Meng (1369_CR8) 2017; 50 1369_CR29 M Ghosh (1369_CR47) 2018 M Amoozegar (1369_CR39) 2018; 113 MK Sohrabi (1369_CR33) 2017; 69 D Dua (1369_CR57) 2017 1369_CR51 1369_CR52 Y Zhang (1369_CR42) 2019; 137 1369_CR58 B Xue (1369_CR45) 2012; 43 E Hancer (1369_CR55) 2018; 422 T-S Du (1369_CR15) 2018; 55 1369_CR17 H Jia (1369_CR20) 2019; 11 1369_CR11 1369_CR56 1369_CR19 Y Liu (1369_CR48) 2017; 47 SS Choong (1369_CR60) 2019; 44 A Bouraoui (1369_CR46) 2018; 50 1369_CR40 MM Mafarja (1369_CR28) 2017; 260 Q Al-Tashi (1369_CR41) 2020; 8 D Gong (1369_CR49) 2016; 22 R Zhou (1369_CR10) 2017; 24 K Hussain (1369_CR22) 2019; 7 N Acharya (1369_CR26) 2018; 22 1369_CR44 Q-K Pan (1369_CR9) 2014; 62 Y Zhang (1369_CR32) 2020; 507 MR Gauthama Raman (1369_CR25) 2017; 134 R Zhou (1369_CR12) 2018; 40 B Selvakumar (1369_CR27) 2019; 81 |
| References_xml | – reference: AbediMGharehchopoghFSAn improved opposition based learning firefly algorithm with dragonfly algorithm for solving continuous optimization problemsIntell Data Anal202024230933810.3233/IDA-194485 – reference: AghdamMHKabiriPFeature selection for intrusion detection system using ant colony optimizationInt J Netw Secur2016183420432 – reference: HancerEPareto front feature selection based on artificial bee colony optimizationInf Sci201842246247910.1016/j.ins.2017.09.028 – reference: Rajamohana S, Umamaheswari K (2018) Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Comput Elect Eng. – reference: BouraouiAJamoussiSBenAyedYA multi-objective genetic algorithm for simultaneous model and feature selection for support vector machinesArtif Intell Rev201850226128110.1007/s10462-017-9543-9 – reference: GharehchopoghFSGholizadehHA comprehensive survey: whale Optimization Algorithm and its applicationsSwarm Evolut Comput20194812410.1016/j.swevo.2019.03.004 – reference: Abbasi A, Firouzi B,Sendur P (2019) On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks. Eng Comput: 1–20. – reference: Emary E, Zawbaa HM (2018) Feature selection via Lèvy Antlion optimization. Pattern Anal Appl:1–20. – reference: AmoozegarMMinaei-BidgoliBOptimizing multi-objective PSO based feature selection method using a feature elitism mechanismExpert Syst Appl201811349951410.1016/j.eswa.2018.07.013 – reference: ZhangYBinary differential evolution with self-learning for multi-objective feature selectionInf Sci20205076785399489210.1016/j.ins.2019.08.040 – reference: He C-L, et al (2019) Multi-objective feature selection based on artificial bee colony for hyperspectral images. In: international conference on bio-inspired computing: theories and applications. Springer – reference: Coello CC, Lechuga MS (2002) MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). IEEE. – reference: JiaHDynamic harris hawks optimization with mutation mechanism for satellite image segmentationRemote Sens20191112142110.3390/rs11121421 – reference: XueBZhangMBrowneWNParticle swarm optimization for feature selection in classification: a multi-objective approachIEEE Trans Cybern20124361656167110.1109/TSMCB.2012.2227469 – reference: Zhang Y, et al (2020) Boosted binary Harris hawks optimizer and feature selection. Structure 25:26 – reference: WanYMulti-objective Hyperspectral Feature Selection Based on Discrete Sine Cosine AlgorithmIEEE Trans Geosci Remote Sens20205853601361810.1109/TGRS.2019.2958812 – reference: Rodrigues D, de Albuquerque VHC, Papa JP (2020) A multi-objective artificial butterfly optimization approach for feature selection. Appl Soft Comput: 106442 – reference: Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat: 65–70. – reference: HansRKaurHKaurNOpposition-based Harris Hawks optimization algorithm for feature selection in breast mass classificationJ Interdiscip Math20202319710610.1080/09720502.2020.1721670 – reference: DuT-SDSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problemsAppl Math Model201855314339373986010.1016/j.apm.2017.08.013 – reference: DuaDand C2017UCI machine learning repositoryGraff – reference: Gharehchopogh FS, Shayanfar H, Gholizadeh H (22019) A comprehensive survey on symbiotic organisms search algorithms. Artif Intell Rev:1–48. – reference: SohrabiMKTajikAMulti-objective feature selection for warfarin dose predictionComput Biol Chem20176912613310.1016/j.compbiolchem.2017.06.002 – reference: MitićMChaotic fruit fly optimization algorithmKnowl Based Syst20158944645810.1016/j.knosys.2015.08.010 – reference: ZhouRImproved fruit fly optimization Algorithm-based density peak clustering and its applicationsTehnicki vjesnik2017242473480 – reference: Gharehchopogh FS, Mousavi SK (2019) A new feature selection in email spam detection by particle swarm optimization and fruit fly optimization algorithms. J Comput Knowl Eng 2(2). – reference: Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier. – reference: MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053 – reference: Du P, et al (2020) A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting. Appl Soft Comput 96: 106620 – reference: GhoshMFeature selection using histogram-based multi-objective GA for handwritten Devanagari numeral recognitionIntelligent engineering informatics2018Springer47147910.1007/978-981-10-7566-7_46 – reference: Ma Q, He Y, Zhou F (2016) Multi-objective fruit fly optimization algorithm for test point selection. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE. – reference: LiuYA many-objective evolutionary algorithm using a one-by-one selection strategyIEEE Trans Cybern20174792689270210.1109/TCYB.2016.2638902 – reference: Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. IEEE. – reference: Rahnema N, Gharehchopogh FS (2020) An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multim Tools Appl:1–26. – reference: Nakamura RY, et al (2012) BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, Patterns and Images. IEEE. – reference: Al-TashiQBinary multi-objective grey wolf optimizer for feature selection in classificationIEEE Access2020810624710626310.1109/ACCESS.2020.3000040 – reference: MengTPanQ-KAn improved fruit fly optimization algorithm for solving the multi-dimensional knapsack problemAppl Soft Comput201750799310.1016/j.asoc.2016.11.023 – reference: WangLZhengX-LA knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problemSwarm Evolut Comput201838546310.1016/j.swevo.2017.06.001 – reference: Gauthama RamanMRAn efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machineKnowl Based Syst201713411210.1016/j.knosys.2017.07.005 – reference: Al-TashiQBinary optimization using hybrid grey wolf optimization for feature selectionIEEE Access20197394963950810.1109/ACCESS.2019.2906757 – reference: Benyamin A, Farhad SG, Saeid B (2020) Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int J Intell Syst. – reference: Wang Q, et al. (2017) Kernel-based fuzzy C-means clustering based on fruit fly optimization algorithm. In: 2017 International Conference on Grey Systems and Intelligent Services (GSIS). IEEE. – reference: SelvakumarBMuneeswaranKFirefly algorithm based feature selection for network intrusion detectionComput Secur20198114815510.1016/j.cose.2018.11.005 – reference: BalachandranMOptimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite designMater Des20123585486210.1016/j.matdes.2011.03.077 – reference: AcharyaNSinghSAn IWD-based feature selection method for intrusion detection systemSoft Comput201822134407441610.1007/s00500-017-2635-2 – reference: Abd Elaziz M, et al (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput:106347. – reference: HussainKZhuWSallehMNMLong-term memory HarrisTM hawk optimization for high dimensional and optimal power flow problemsIEEE Access2019714759614761610.1109/ACCESS.2019.2946664 – reference: GongDSunJMiaoZA set-based genetic algorithm for interval many-objective optimization problemsIEEE Trans Evol Comput2016221476010.1109/TEVC.2016.2634625 – reference: Abdel-Basset M, Ding W, El-Shahat D (2020) A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev:1–45. – reference: PanQ-KAn improved fruit fly optimization algorithm for continuous function optimization problemsKnowl Based Syst201462698310.1016/j.knosys.2014.02.021 – reference: ZhangYCost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithmExpert Syst Appl2019137465810.1016/j.eswa.2019.06.044 – reference: WangX-HMulti-objective feature selection based on artificial bee colony: an acceleration approach with variable sample sizeAppl Soft Comput20208810604110.1016/j.asoc.2019.106041 – reference: Wu L, et al (2018) Multi-objective Fruit Fly Optimization Based on Cloud Model. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE. – reference: ChoongSSWongL-PLimCPAn artificial bee colony algorithm with a modified choice function for the Traveling Salesman ProblemSwarm and Evolut Comput20194462263510.1016/j.swevo.2018.08.004 – reference: ZhouRDensity peak clustering algorithm using knowledge learning-based fruit fly optimizationInt J Comput Appl2018403110 – reference: PanW-TA new Fruit Fly Optimization Algorithm: taking the financial distress model as an exampleKnowl Based Syst201226697410.1016/j.knosys.2011.07.001 – reference: Alamiedy TA, et al. (2019) Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm. J Ambient Intell Hum Comput:1–22. – reference: WuLA new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problemsKnowl Based Syst201814415317310.1016/j.knosys.2017.12.031 – reference: DebKA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 – reference: HeidariAAHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028 – volume: 69 start-page: 126 year: 2017 ident: 1369_CR33 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2017.06.002 – volume: 62 start-page: 69 year: 2014 ident: 1369_CR9 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.02.021 – ident: 1369_CR6 doi: 10.1016/j.compeleceng.2018.02.015 – volume: 7 start-page: 39496 year: 2019 ident: 1369_CR54 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – ident: 1369_CR19 doi: 10.1007/s10462-020-09860-3 – volume: 50 start-page: 79 year: 2017 ident: 1369_CR8 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.11.023 – volume: 50 start-page: 261 issue: 2 year: 2018 ident: 1369_CR46 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9543-9 – volume: 7 start-page: 147596 year: 2019 ident: 1369_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946664 – volume: 43 start-page: 1656 issue: 6 year: 2012 ident: 1369_CR45 publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2227469 – volume: 58 start-page: 3601 issue: 5 year: 2020 ident: 1369_CR34 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2019.2958812 – volume: 18 start-page: 420 issue: 3 year: 2016 ident: 1369_CR24 publication-title: Int J Netw Secur – ident: 1369_CR58 – ident: 1369_CR23 doi: 10.1007/s00366-019-00892-0 – ident: 1369_CR31 – volume: 35 start-page: 854 year: 2012 ident: 1369_CR59 publication-title: Mater Des doi: 10.1016/j.matdes.2011.03.077 – ident: 1369_CR21 doi: 10.1016/j.asoc.2020.106347 – volume: 134 start-page: 1 year: 2017 ident: 1369_CR25 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.07.005 – ident: 1369_CR11 doi: 10.1109/GSIS.2017.8077713 – volume: 260 start-page: 302 year: 2017 ident: 1369_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 422 start-page: 462 year: 2018 ident: 1369_CR55 publication-title: Inf Sci doi: 10.1016/j.ins.2017.09.028 – ident: 1369_CR29 doi: 10.1007/s10044-018-0695-2 – ident: 1369_CR44 doi: 10.1007/978-981-15-3425-6_48 – ident: 1369_CR36 doi: 10.1109/WCICA.2018.8630556 – ident: 1369_CR38 doi: 10.1016/j.asoc.2020.106620 – volume: 47 start-page: 2689 issue: 9 year: 2017 ident: 1369_CR48 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2638902 – volume: 88 start-page: 106041 year: 2020 ident: 1369_CR43 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106041 – volume-title: and C year: 2017 ident: 1369_CR57 – volume: 40 start-page: 1 issue: 3 year: 2018 ident: 1369_CR12 publication-title: Int J Comput Appl – ident: 1369_CR40 doi: 10.1016/j.asoc.2020.106442 – ident: 1369_CR7 doi: 10.1109/SIBGRAPI.2012.47 – ident: 1369_CR30 doi: 10.1007/s12652-019-01569-8 – volume: 26 start-page: 69 year: 2012 ident: 1369_CR50 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2011.07.001 – volume: 22 start-page: 47 issue: 1 year: 2016 ident: 1369_CR49 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2634625 – ident: 1369_CR1 – volume: 38 start-page: 54 year: 2018 ident: 1369_CR35 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2017.06.001 – volume: 11 start-page: 1421 issue: 12 year: 2019 ident: 1369_CR20 publication-title: Remote Sens doi: 10.3390/rs11121421 – ident: 1369_CR56 – volume: 55 start-page: 314 year: 2018 ident: 1369_CR15 publication-title: Appl Math Model doi: 10.1016/j.apm.2017.08.013 – ident: 1369_CR37 – ident: 1369_CR52 – ident: 1369_CR51 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 1369_CR53 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 507 start-page: 67 year: 2020 ident: 1369_CR32 publication-title: Inf Sci doi: 10.1016/j.ins.2019.08.040 – volume: 48 start-page: 1 year: 2019 ident: 1369_CR3 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2019.03.004 – start-page: 471 volume-title: Intelligent engineering informatics year: 2018 ident: 1369_CR47 doi: 10.1007/978-981-10-7566-7_46 – volume: 8 start-page: 106247 year: 2020 ident: 1369_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000040 – volume: 81 start-page: 148 year: 2019 ident: 1369_CR27 publication-title: Comput Secur doi: 10.1016/j.cose.2018.11.005 – volume: 89 start-page: 446 year: 2015 ident: 1369_CR13 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.08.010 – volume: 137 start-page: 46 year: 2019 ident: 1369_CR42 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.06.044 – volume: 144 start-page: 153 year: 2018 ident: 1369_CR14 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.12.031 – ident: 1369_CR2 doi: 10.1007/s11042-020-09639-2 – volume: 23 start-page: 97 issue: 1 year: 2020 ident: 1369_CR18 publication-title: J Interdiscip Math doi: 10.1080/09720502.2020.1721670 – volume: 44 start-page: 622 year: 2019 ident: 1369_CR60 publication-title: Swarm and Evolut Comput doi: 10.1016/j.swevo.2018.08.004 – volume: 22 start-page: 4407 issue: 13 year: 2018 ident: 1369_CR26 publication-title: Soft Comput doi: 10.1007/s00500-017-2635-2 – volume: 97 start-page: 849 year: 2019 ident: 1369_CR16 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 113 start-page: 499 year: 2018 ident: 1369_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.013 – volume: 24 start-page: 309 issue: 2 year: 2020 ident: 1369_CR4 publication-title: Intell Data Anal doi: 10.3233/IDA-194485 – volume: 24 start-page: 473 issue: 2 year: 2017 ident: 1369_CR10 publication-title: Tehnicki vjesnik – ident: 1369_CR17 – ident: 1369_CR5 doi: 10.1002/int.22342 |
| SSID | ssj0013009 |
| Score | 2.6096323 |
| Snippet | Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1845 |
| SubjectTerms | Algorithms CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Control methods Data mining Datasets Feature selection Machine learning Math. Applications in Chemistry Mathematical and Computational Engineering Multiple objective analysis Optimization algorithms Original Article Pareto optimization Standard data Statistical tests Systems Theory |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBRwFRKMgDG0TYeTmeUIUoTBUSIHWLYsfmob5oAr8f23EaQKILa5w4Uc53vvPdfR_AmdIxA5cB8SKpAi-UmbaDjASe0rtNkOAY-1xZsgk6GCTDIbt3B26FK6usbaI11PlUmDPyS58a5yTUin01e_cMa5TJrjoKjVVYMygJxJbuPTRZBFyVeBBqSrxi6ppmbOucAWIx5bcmmA5i5rGfG1Pjbf5KkNp9p7_93y_egS3ncaJetUR2YUVO2rDtvE_kdLtow-Y3aMI9uO0hW2voTflbZRPRVFuXsWvbRNnoWb-rfBkj7fUiJS0-KCosq44Zd0Q1xT489W8er-88R7rgCa2NpY4nkyTGSvmcxzKiWSwpwyEXLCTCYLGrnHNfJTJUWUKIJEwlQl-LhMK5UH4WHEBrMp3IQ0BMShrlJMMxC0KuF4XEmdTxl_QjQbVf1QFS__FUOERyQ4wxShdYylZKqZZSaqWUsg6cL56ZVXgcS-_u1qJJnW4WaSOXDlzUwm2G_57taPlsx7Dhm94IWx3YhVY5_5AnsC4-y9difmpX5heLsugn priority: 102 providerName: ProQuest |
| Title | A multi-objective optimization algorithm for feature selection problems |
| URI | https://link.springer.com/article/10.1007/s00366-021-01369-9 https://www.proquest.com/docview/2701614146 |
| Volume | 38 |
| WOSCitedRecordID | wos000626388400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4oeNCDKGpEkfTgTTfZ7qvbIxrQxIQQUEO8bLalVQywhkV_v23pgho10cse-spm2s4jnfk-gFOpYgYmfOyEQvpOIFKlByn2HamsjR-7kesxacgmSKcTDwa0a4vC8iLbvXiSNJp6WeymoVN0wqwOf_2IOnQdysrcxZqwode_X70duIvEDkx0YldEbKnM92t8NkcrH_PLs6ixNu3K__5zB7atd4mai-OwC2tiWoWK9TSRvce5airIHIq2Kmx9QCbcg6smMqmGTsaeFyoRZUq5TGzVJkrHj9lsNH-aIOX0IikMPCjKDamO7rc8Nfk-3LVbt5fXjuVccLi6jHMVTsZx5ErpMRaJkKSRINQNGKcB5hqKXQ4Z82QsApnGGAtMZcxVW8ilO-TSS_0DKE2zqTgERIUg4RCnbkT9gKkzIdxUqPBLeCEnyq2qAS5En3ALSK55McbJEkrZiDJRokyMKBNag7PlnJcFHMevo-vFjib2auaJR7SXGygLUYPzYgdX3T-vdvS34cew6elSCZMsWIfSfPYqTmCDv81H-awB5YtWp9trwPoNcRo647Svvt3woWEO8ztQ4ujv |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxUxEJ4AmoAHEZDwFLEHPUHDtvuj24MxROVHHr54wITbsu2bqgTeQ_ap8Z_yb3Ta7fLQBG4cuG53m-z2m68z25n5AF45ihkMpoLn6FKeYU08qEXKHe02aZkUiTQuiE2owaA8PtafZuBPVwvj0yo7TgxEPRxb_498WyrvnGRk2G8vvnOvGuVPVzsJjRYWffz9i0K25s3Be1rf11Lufjh6t8-jqgC3BLcJBUxlWSTOSWMKzFVdoNJJZqzOhPXNxt3QGOlKzFxdCoFCu9LStdy6ZGidrFOadxYeZGmpvF31FZ-eWiRtSolQPqWsULFIJ5Tq-cYvPt3XB-9pobn-dyOcerf_HciGfW538b59oSfwOHrUbKc1gSWYwdEyLEbvmkXuapbh0bXWiyuwt8NCLiUfm9OW89mY2PM8lqWy-uwLvdvk6zkjr545DP1PWRNUg_x4FOJpnsLnO3m5VZgbjUe4Bkwjqnwo6qTQaWYI9JjUSPElytwq8ht7ILoVrmzsuO6FP86qq17RARUVoaIKqKh0Dzavnrlo-43cevd6B4Uqck9TTXHQg60OTNPhm2d7dvtsL2F-_-jjYXV4MOg_hwXp60BCJuQ6zE0uf-ALeGh_Tr41lxvBKhic3DXI_gLNvUgV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5Riqr2UB6l6hYKPtATRMTOw_EBVah0AYFWeygS4hJi77gPLbuUbIv4a_11HTsO2yLBjUOvcWIp8ed5xN_MB7BhKWfQmPAoQ5tEKVZkBxVPIkveJiniPBbaerEJ2esVp6eqPwO_21oYR6tsbaI31IOxcf_It4V0wUnqBFpsoEX097ofLn9ETkHKnbS2choNRI7w5prSt3rncI_W-r0Q3U-fPx5EQWEgMgS9CSVPRZHH1gqtc8xklaNUcaqNSrlxjcftQGthC0xtVXCOXNnC0LXM2HhgrKgSmvcJPJWUYzo6YT87m55gxA29hEtHL8tlKNjxZXuuCYyj_rpEPslVpP51itNI987hrPd53fn_-WstwMsQabPdZmsswgyOlmA-RN0s2LR6CV781ZLxFezvMs-xjMb6e-ML2Jis6kUoV2XV8Au92-TrBaNon1n0fVFZ7dWE3HgQ6KmX4eRRXu41zI7GI3wDTCHKbMCrOFdJqmkzYFwh5Z0oMiMpnuwAb1e7NKETuxMEGZa3PaQ9QkpCSOkRUqoObN4-c9n0IXnw7tUWFmWwSXU5xUQHtlpgTYfvn-3tw7OtwzPCVnl82DtagefClYd4guQqzE6ufuI7mDO_Jt_qqzW_QRicPzbG_gCZSlE5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+optimization+algorithm+for+feature+selection+problems&rft.jtitle=Engineering+with+computers&rft.au=Abdollahzadeh%2C+Benyamin&rft.au=Gharehchopogh%2C+Farhad+Soleimanian&rft.date=2022-08-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.issue=Suppl+3&rft.spage=1845&rft.epage=1863&rft_id=info:doi/10.1007%2Fs00366-021-01369-9&rft.externalDocID=10_1007_s00366_021_01369_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |