A multi-objective optimization algorithm for feature selection problems

Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks...

Full description

Saved in:
Bibliographic Details
Published in:Engineering with computers Vol. 38; no. Suppl 3; pp. 1845 - 1863
Main Authors: Abdollahzadeh, Benyamin, Gharehchopogh, Farhad Soleimanian
Format: Journal Article
Language:English
Published: London Springer London 01.08.2022
Springer Nature B.V
Subjects:
ISSN:0177-0667, 1435-5663
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks Optimization (HHO) algorithm has been multiplied, and in the second solution, the Fruitfly Optimization Algorithm (FOA) has been multiplied, and in the third solution, these two solutions are hydride and are named MOHHOFOA. The results were tested with MOPSO, NSGA-II, BGWOPSOFS and B-MOABC algorithms for FS on 15 standard data sets with mean, best, worst, standard deviation (STD) criteria. The Wilcoxon statistical test was also used with a significance level of 5% and the Bonferroni–Holm method to control the family-wise error rate. The results are shown in the Pareto front charts, indicating that the proposed solutions' performance on the data set is promising.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-021-01369-9