A multi-objective optimization algorithm for feature selection problems

Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Engineering with computers Ročník 38; číslo Suppl 3; s. 1845 - 1863
Hlavní autori: Abdollahzadeh, Benyamin, Gharehchopogh, Farhad Soleimanian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.08.2022
Springer Nature B.V
Predmet:
ISSN:0177-0667, 1435-5663
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks Optimization (HHO) algorithm has been multiplied, and in the second solution, the Fruitfly Optimization Algorithm (FOA) has been multiplied, and in the third solution, these two solutions are hydride and are named MOHHOFOA. The results were tested with MOPSO, NSGA-II, BGWOPSOFS and B-MOABC algorithms for FS on 15 standard data sets with mean, best, worst, standard deviation (STD) criteria. The Wilcoxon statistical test was also used with a significance level of 5% and the Bonferroni–Holm method to control the family-wise error rate. The results are shown in the Pareto front charts, indicating that the proposed solutions' performance on the data set is promising.
AbstractList Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the processing time and accuracy of the categories. In this paper, three different solutions are proposed to FS. In the first solution, the Harris Hawks Optimization (HHO) algorithm has been multiplied, and in the second solution, the Fruitfly Optimization Algorithm (FOA) has been multiplied, and in the third solution, these two solutions are hydride and are named MOHHOFOA. The results were tested with MOPSO, NSGA-II, BGWOPSOFS and B-MOABC algorithms for FS on 15 standard data sets with mean, best, worst, standard deviation (STD) criteria. The Wilcoxon statistical test was also used with a significance level of 5% and the Bonferroni–Holm method to control the family-wise error rate. The results are shown in the Pareto front charts, indicating that the proposed solutions' performance on the data set is promising.
Author Gharehchopogh, Farhad Soleimanian
Abdollahzadeh, Benyamin
Author_xml – sequence: 1
  givenname: Benyamin
  surname: Abdollahzadeh
  fullname: Abdollahzadeh, Benyamin
  organization: Department of Computer Engineering, Urmia Branch, Islamic Azad University
– sequence: 2
  givenname: Farhad Soleimanian
  orcidid: 0000-0003-1588-1659
  surname: Gharehchopogh
  fullname: Gharehchopogh, Farhad Soleimanian
  email: bonab.farhad@gmail.com
  organization: Department of Computer Engineering, Urmia Branch, Islamic Azad University
BookMark eNp9kE9LwzAYh4NMcJt-AU8Fz9E3TZs2xzF0EwZe9BzSLJkZbTOTVNBPb7YKgoedAm-e5_3zm6FJ73qN0C2BewJQPQQAyhiGnGAglHHML9CUFLTEJWN0gqZAqgoDY9UVmoWwh0QB8ClaLbJuaKPFrtlrFe2nztwh2s5-y2hdn8l257yN711mnM-MlnHwOgu6PcLp_-Bd0-ouXKNLI9ugb37fOXp7enxdrvHmZfW8XGywooRHXEBdMzAmbxqmy0oyXXEoGsULojgtS7NtmtzUujCyJkQTbmqVaqUysFUml3SO7sa-afDHoEMUezf4Po0UeQWEkYIULFH1SCnvQvDaCGXj6aDopW0FAXGMTYyxiRSbOMUmeFLzf-rB2076r_MSHaWQ4H6n_d9WZ6wfMgaDNA
CitedBy_id crossref_primary_10_1016_j_wear_2024_205340
crossref_primary_10_3390_bdcc6040104
crossref_primary_10_1007_s40747_023_01118_z
crossref_primary_10_1016_j_eswa_2024_123977
crossref_primary_10_1016_j_tsep_2024_103186
crossref_primary_10_3390_a15120482
crossref_primary_10_1016_j_swevo_2025_101914
crossref_primary_10_3390_app13074356
crossref_primary_10_1007_s10462_023_10451_1
crossref_primary_10_3390_app122110760
crossref_primary_10_1007_s44443_025_00078_3
crossref_primary_10_1016_j_aei_2024_102590
crossref_primary_10_1109_ACCESS_2023_3333000
crossref_primary_10_1016_j_iswa_2023_200202
crossref_primary_10_1016_j_knosys_2023_111352
crossref_primary_10_1016_j_dajour_2025_100598
crossref_primary_10_1007_s00521_023_08812_6
crossref_primary_10_1007_s11831_021_09624_4
crossref_primary_10_1016_j_cpc_2025_109534
crossref_primary_10_1038_s41598_022_09126_8
crossref_primary_10_1016_j_nexres_2025_100639
crossref_primary_10_1016_j_eswa_2024_124936
crossref_primary_10_3390_a17090416
crossref_primary_10_32604_cmc_2024_055080
crossref_primary_10_1007_s13198_022_01650_0
crossref_primary_10_1007_s10462_024_11032_6
crossref_primary_10_1016_j_asoc_2024_111479
crossref_primary_10_1016_j_cosrev_2025_100805
crossref_primary_10_1016_j_applthermaleng_2025_126661
crossref_primary_10_1016_j_cie_2025_111514
crossref_primary_10_1007_s11042_022_12409_x
crossref_primary_10_1016_j_knosys_2023_110494
crossref_primary_10_1007_s11227_024_06713_6
crossref_primary_10_1007_s10586_021_03304_5
crossref_primary_10_1016_j_swevo_2023_101415
crossref_primary_10_1007_s10921_023_01024_x
crossref_primary_10_1002_cjce_25417
crossref_primary_10_1007_s00366_021_01554_w
crossref_primary_10_1016_j_aej_2025_05_071
crossref_primary_10_3390_sym17040572
crossref_primary_10_1016_j_chemolab_2024_105295
crossref_primary_10_1007_s40747_022_00852_0
crossref_primary_10_3390_rs15174178
crossref_primary_10_1016_j_tsep_2024_102819
crossref_primary_10_1007_s11227_022_04395_6
crossref_primary_10_3390_a17080355
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_1016_j_aei_2022_101732
crossref_primary_10_1016_j_asoc_2025_113413
crossref_primary_10_3390_e25081128
crossref_primary_10_1038_s41598_024_75842_y
crossref_primary_10_1016_j_knosys_2022_109989
crossref_primary_10_1109_TEVC_2023_3284867
crossref_primary_10_1109_TMAG_2025_3554192
crossref_primary_10_1016_j_heliyon_2024_e31655
crossref_primary_10_1111_exsy_13293
crossref_primary_10_3390_app122110722
crossref_primary_10_1016_j_tws_2025_113453
crossref_primary_10_1007_s13132_024_02083_9
crossref_primary_10_1007_s13042_025_02648_3
crossref_primary_10_1016_j_knosys_2023_110462
crossref_primary_10_3390_biomimetics10080537
crossref_primary_10_1109_ACCESS_2024_3354714
crossref_primary_10_1007_s10489_022_03808_6
crossref_primary_10_1007_s00500_023_07930_6
crossref_primary_10_1007_s00354_022_00158_2
crossref_primary_10_1007_s11042_023_17329_y
crossref_primary_10_1371_journal_pone_0286433
crossref_primary_10_1007_s00521_022_07391_2
crossref_primary_10_1007_s10922_022_09653_9
crossref_primary_10_1007_s12065_023_00892_6
crossref_primary_10_7717_peerj_cs_1068
crossref_primary_10_1007_s10614_024_10626_0
crossref_primary_10_1007_s10586_025_05465_z
crossref_primary_10_3390_pr12020395
crossref_primary_10_1016_j_ins_2023_119945
crossref_primary_10_3390_app15158710
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1007_s11831_021_09698_0
crossref_primary_10_1016_j_swevo_2025_102070
crossref_primary_10_1109_ACCESS_2024_3461164
crossref_primary_10_1016_j_fuel_2022_127249
crossref_primary_10_3390_computers11110161
crossref_primary_10_1016_j_cie_2025_111022
crossref_primary_10_1016_j_eswa_2023_122701
crossref_primary_10_4108_ew_7188
crossref_primary_10_1007_s12065_024_00917_8
crossref_primary_10_3390_math13172799
crossref_primary_10_1007_s00500_022_07805_2
crossref_primary_10_7717_peerj_cs_2023
crossref_primary_10_1007_s11831_025_10240_9
crossref_primary_10_1016_j_asej_2023_102245
crossref_primary_10_1515_ijeeps_2025_0184
crossref_primary_10_1016_j_engappai_2023_106555
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_1016_j_adhoc_2024_103485
crossref_primary_10_3390_math11153312
crossref_primary_10_1007_s42235_023_00359_5
crossref_primary_10_1016_j_asoc_2023_110268
crossref_primary_10_1007_s12559_023_10149_0
crossref_primary_10_1016_j_knosys_2025_113062
crossref_primary_10_1007_s44288_025_00131_8
Cites_doi 10.1016/j.compbiolchem.2017.06.002
10.1016/j.knosys.2014.02.021
10.1016/j.compeleceng.2018.02.015
10.1109/ACCESS.2019.2906757
10.1007/s10462-020-09860-3
10.1016/j.asoc.2016.11.023
10.1007/s10462-017-9543-9
10.1109/ACCESS.2019.2946664
10.1109/TSMCB.2012.2227469
10.1109/TGRS.2019.2958812
10.1007/s00366-019-00892-0
10.1016/j.matdes.2011.03.077
10.1016/j.asoc.2020.106347
10.1016/j.knosys.2017.07.005
10.1109/GSIS.2017.8077713
10.1016/j.neucom.2017.04.053
10.1016/j.ins.2017.09.028
10.1007/s10044-018-0695-2
10.1007/978-981-15-3425-6_48
10.1109/WCICA.2018.8630556
10.1016/j.asoc.2020.106620
10.1109/TCYB.2016.2638902
10.1016/j.asoc.2019.106041
10.1016/j.asoc.2020.106442
10.1109/SIBGRAPI.2012.47
10.1007/s12652-019-01569-8
10.1016/j.knosys.2011.07.001
10.1109/TEVC.2016.2634625
10.1016/j.swevo.2017.06.001
10.3390/rs11121421
10.1016/j.apm.2017.08.013
10.1109/4235.996017
10.1016/j.ins.2019.08.040
10.1016/j.swevo.2019.03.004
10.1007/978-981-10-7566-7_46
10.1109/ACCESS.2020.3000040
10.1016/j.cose.2018.11.005
10.1016/j.knosys.2015.08.010
10.1016/j.eswa.2019.06.044
10.1016/j.knosys.2017.12.031
10.1007/s11042-020-09639-2
10.1080/09720502.2020.1721670
10.1016/j.swevo.2018.08.004
10.1007/s00500-017-2635-2
10.1016/j.future.2019.02.028
10.1016/j.eswa.2018.07.013
10.3233/IDA-194485
10.1002/int.22342
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-021-01369-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 1863
ExternalDocumentID 10_1007_s00366_021_01369_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-408860ff2bb6e57a6e7904bc941c9355fdbb2f8e4fa811e19f8cfdb5cf0dcf2a3
IEDL.DBID M7S
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626388400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-0667
IngestDate Tue Dec 02 16:07:37 EST 2025
Sat Nov 29 06:25:19 EST 2025
Tue Nov 18 22:27:44 EST 2025
Fri Feb 21 02:45:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 3
Keywords Multiobjective
Feature selection
Bonferroni–Holm
Fruitfly optimization algorithm
Family-wise error rate
Harris hawks optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-408860ff2bb6e57a6e7904bc941c9355fdbb2f8e4fa811e19f8cfdb5cf0dcf2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1588-1659
PQID 2701614146
PQPubID 326339
PageCount 19
ParticipantIDs proquest_journals_2701614146
crossref_citationtrail_10_1007_s00366_021_01369_9
crossref_primary_10_1007_s00366_021_01369_9
springer_journals_10_1007_s00366_021_01369_9
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References SelvakumarBMuneeswaranKFirefly algorithm based feature selection for network intrusion detectionComput Secur20198114815510.1016/j.cose.2018.11.005
He C-L, et al (2019) Multi-objective feature selection based on artificial bee colony for hyperspectral images. In: international conference on bio-inspired computing: theories and applications. Springer
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. IEEE.
BouraouiAJamoussiSBenAyedYA multi-objective genetic algorithm for simultaneous model and feature selection for support vector machinesArtif Intell Rev201850226128110.1007/s10462-017-9543-9
ZhangYBinary differential evolution with self-learning for multi-objective feature selectionInf Sci20205076785399489210.1016/j.ins.2019.08.040
Abd Elaziz M, et al (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput:106347.
Abdel-Basset M, Ding W, El-Shahat D (2020) A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev:1–45.
AghdamMHKabiriPFeature selection for intrusion detection system using ant colony optimizationInt J Netw Secur2016183420432
WangX-HMulti-objective feature selection based on artificial bee colony: an acceleration approach with variable sample sizeAppl Soft Comput20208810604110.1016/j.asoc.2019.106041
HancerEPareto front feature selection based on artificial bee colony optimizationInf Sci201842246247910.1016/j.ins.2017.09.028
BalachandranMOptimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite designMater Des20123585486210.1016/j.matdes.2011.03.077
LiuYA many-objective evolutionary algorithm using a one-by-one selection strategyIEEE Trans Cybern20174792689270210.1109/TCYB.2016.2638902
Wu L, et al (2018) Multi-objective Fruit Fly Optimization Based on Cloud Model. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE.
Benyamin A, Farhad SG, Saeid B (2020) Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int J Intell Syst.
Rajamohana S, Umamaheswari K (2018) Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Comput Elect Eng.
WuLA new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problemsKnowl Based Syst201814415317310.1016/j.knosys.2017.12.031
Du P, et al (2020) A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting. Appl Soft Comput 96: 106620
AbediMGharehchopoghFSAn improved opposition based learning firefly algorithm with dragonfly algorithm for solving continuous optimization problemsIntell Data Anal202024230933810.3233/IDA-194485
Rodrigues D, de Albuquerque VHC, Papa JP (2020) A multi-objective artificial butterfly optimization approach for feature selection. Appl Soft Comput: 106442
XueBZhangMBrowneWNParticle swarm optimization for feature selection in classification: a multi-objective approachIEEE Trans Cybern20124361656167110.1109/TSMCB.2012.2227469
Gharehchopogh FS, Shayanfar H, Gholizadeh H (22019) A comprehensive survey on symbiotic organisms search algorithms. Artif Intell Rev:1–48.
Nakamura RY, et al (2012) BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, Patterns and Images. IEEE.
HussainKZhuWSallehMNMLong-term memory HarrisTM hawk optimization for high dimensional and optimal power flow problemsIEEE Access2019714759614761610.1109/ACCESS.2019.2946664
SohrabiMKTajikAMulti-objective feature selection for warfarin dose predictionComput Biol Chem20176912613310.1016/j.compbiolchem.2017.06.002
Ma Q, He Y, Zhou F (2016) Multi-objective fruit fly optimization algorithm for test point selection. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE.
HeidariAAHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028
HansRKaurHKaurNOpposition-based Harris Hawks optimization algorithm for feature selection in breast mass classificationJ Interdiscip Math20202319710610.1080/09720502.2020.1721670
Al-TashiQBinary optimization using hybrid grey wolf optimization for feature selectionIEEE Access20197394963950810.1109/ACCESS.2019.2906757
Gharehchopogh FS, Mousavi SK (2019) A new feature selection in email spam detection by particle swarm optimization and fruit fly optimization algorithms. J Comput Knowl Eng 2(2).
ZhouRImproved fruit fly optimization Algorithm-based density peak clustering and its applicationsTehnicki vjesnik2017242473480
Zhang Y, et al (2020) Boosted binary Harris hawks optimizer and feature selection. Structure 25:26
ZhangYCost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithmExpert Syst Appl2019137465810.1016/j.eswa.2019.06.044
Wang Q, et al. (2017) Kernel-based fuzzy C-means clustering based on fruit fly optimization algorithm. In: 2017 International Conference on Grey Systems and Intelligent Services (GSIS). IEEE.
Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier.
PanQ-KAn improved fruit fly optimization algorithm for continuous function optimization problemsKnowl Based Syst201462698310.1016/j.knosys.2014.02.021
WanYMulti-objective Hyperspectral Feature Selection Based on Discrete Sine Cosine AlgorithmIEEE Trans Geosci Remote Sens20205853601361810.1109/TGRS.2019.2958812
Alamiedy TA, et al. (2019) Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm. J Ambient Intell Hum Comput:1–22.
AmoozegarMMinaei-BidgoliBOptimizing multi-objective PSO based feature selection method using a feature elitism mechanismExpert Syst Appl201811349951410.1016/j.eswa.2018.07.013
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat: 65–70.
DebKA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
Rahnema N, Gharehchopogh FS (2020) An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multim Tools Appl:1–26.
MengTPanQ-KAn improved fruit fly optimization algorithm for solving the multi-dimensional knapsack problemAppl Soft Comput201750799310.1016/j.asoc.2016.11.023
GongDSunJMiaoZA set-based genetic algorithm for interval many-objective optimization problemsIEEE Trans Evol Comput2016221476010.1109/TEVC.2016.2634625
WangLZhengX-LA knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problemSwarm Evolut Comput201838546310.1016/j.swevo.2017.06.001
Coello CC, Lechuga MS (2002) MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). IEEE.
MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053
GhoshMFeature selection using histogram-based multi-objective GA for handwritten Devanagari numeral recognitionIntelligent engineering informatics2018Springer47147910.1007/978-981-10-7566-7_46
AcharyaNSinghSAn IWD-based feature selection method for intrusion detection systemSoft Comput201822134407441610.1007/s00500-017-2635-2
Al-TashiQBinary multi-objective grey wolf optimizer for feature selection in classificationIEEE Access2020810624710626310.1109/ACCESS.2020.3000040
GharehchopoghFSGholizadehHA comprehensive survey: whale Optimization Algorithm and its applicationsSwarm Evolut Comput20194812410.1016/j.swevo.2019.03.004
MitićMChaotic fruit fly optimization algorithmKnowl Based Syst20158944645810.1016/j.knosys.2015.08.010
DuT-SDSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problemsAppl Math Model201855314339373986010.1016/j.apm.2017.08.013
Emary E, Zawbaa HM (2018) Feature selection via Lèvy Antlion optimization. Pattern Anal Appl:1–20.
JiaHDynamic harris hawks optimization with mutation mechanism for satellite image segmentationRemote Sens20191112142110.3390/rs11121421
Abbasi A, Firouzi B,Sendur P (2019) On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks. Eng Comput: 1–20.
Gauthama RamanMRAn efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machineKnowl Based Syst201713411210.1016/j.knosys.2017.07.005
ChoongSSWongL-PLimCPAn artificial bee colony algorithm with a modified choice function for the Traveling Salesman ProblemSwarm and Evolut Comput20194462263510.1016/j.swevo.2018.08.004
PanW-TA new Fruit Fly Optimization Algorithm: taking the financial distress model as an exampleKnowl Based Syst201226697410.1016/j.knosys.2011.07.001
DuaDand C2017UCI machine learning repositoryGraff
ZhouRDensity peak clustering algorithm using knowledge learning-based fruit fly optimizationInt J Comput Appl2018403110
M Mitić (1369_CR13) 2015; 89
1369_CR30
L Wang (1369_CR35) 2018; 38
R Hans (1369_CR18) 2020; 23
1369_CR31
AA Heidari (1369_CR16) 2019; 97
X-H Wang (1369_CR43) 2020; 88
L Wu (1369_CR14) 2018; 144
1369_CR36
1369_CR37
1369_CR38
M Balachandran (1369_CR59) 2012; 35
W-T Pan (1369_CR50) 2012; 26
M Abedi (1369_CR4) 2020; 24
FS Gharehchopogh (1369_CR3) 2019; 48
Y Wan (1369_CR34) 2020; 58
MH Aghdam (1369_CR24) 2016; 18
1369_CR5
1369_CR6
1369_CR7
K Deb (1369_CR53) 2002; 6
Q Al-Tashi (1369_CR54) 2019; 7
1369_CR1
1369_CR2
1369_CR21
1369_CR23
T Meng (1369_CR8) 2017; 50
1369_CR29
M Ghosh (1369_CR47) 2018
M Amoozegar (1369_CR39) 2018; 113
MK Sohrabi (1369_CR33) 2017; 69
D Dua (1369_CR57) 2017
1369_CR51
1369_CR52
Y Zhang (1369_CR42) 2019; 137
1369_CR58
B Xue (1369_CR45) 2012; 43
E Hancer (1369_CR55) 2018; 422
T-S Du (1369_CR15) 2018; 55
1369_CR17
H Jia (1369_CR20) 2019; 11
1369_CR11
1369_CR56
1369_CR19
Y Liu (1369_CR48) 2017; 47
SS Choong (1369_CR60) 2019; 44
A Bouraoui (1369_CR46) 2018; 50
1369_CR40
MM Mafarja (1369_CR28) 2017; 260
Q Al-Tashi (1369_CR41) 2020; 8
D Gong (1369_CR49) 2016; 22
R Zhou (1369_CR10) 2017; 24
K Hussain (1369_CR22) 2019; 7
N Acharya (1369_CR26) 2018; 22
1369_CR44
Q-K Pan (1369_CR9) 2014; 62
Y Zhang (1369_CR32) 2020; 507
MR Gauthama Raman (1369_CR25) 2017; 134
R Zhou (1369_CR12) 2018; 40
B Selvakumar (1369_CR27) 2019; 81
References_xml – reference: AbediMGharehchopoghFSAn improved opposition based learning firefly algorithm with dragonfly algorithm for solving continuous optimization problemsIntell Data Anal202024230933810.3233/IDA-194485
– reference: AghdamMHKabiriPFeature selection for intrusion detection system using ant colony optimizationInt J Netw Secur2016183420432
– reference: HancerEPareto front feature selection based on artificial bee colony optimizationInf Sci201842246247910.1016/j.ins.2017.09.028
– reference: Rajamohana S, Umamaheswari K (2018) Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Comput Elect Eng.
– reference: BouraouiAJamoussiSBenAyedYA multi-objective genetic algorithm for simultaneous model and feature selection for support vector machinesArtif Intell Rev201850226128110.1007/s10462-017-9543-9
– reference: GharehchopoghFSGholizadehHA comprehensive survey: whale Optimization Algorithm and its applicationsSwarm Evolut Comput20194812410.1016/j.swevo.2019.03.004
– reference: Abbasi A, Firouzi B,Sendur P (2019) On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks. Eng Comput: 1–20.
– reference: Emary E, Zawbaa HM (2018) Feature selection via Lèvy Antlion optimization. Pattern Anal Appl:1–20.
– reference: AmoozegarMMinaei-BidgoliBOptimizing multi-objective PSO based feature selection method using a feature elitism mechanismExpert Syst Appl201811349951410.1016/j.eswa.2018.07.013
– reference: ZhangYBinary differential evolution with self-learning for multi-objective feature selectionInf Sci20205076785399489210.1016/j.ins.2019.08.040
– reference: He C-L, et al (2019) Multi-objective feature selection based on artificial bee colony for hyperspectral images. In: international conference on bio-inspired computing: theories and applications. Springer
– reference: Coello CC, Lechuga MS (2002) MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). IEEE.
– reference: JiaHDynamic harris hawks optimization with mutation mechanism for satellite image segmentationRemote Sens20191112142110.3390/rs11121421
– reference: XueBZhangMBrowneWNParticle swarm optimization for feature selection in classification: a multi-objective approachIEEE Trans Cybern20124361656167110.1109/TSMCB.2012.2227469
– reference: Zhang Y, et al (2020) Boosted binary Harris hawks optimizer and feature selection. Structure 25:26
– reference: WanYMulti-objective Hyperspectral Feature Selection Based on Discrete Sine Cosine AlgorithmIEEE Trans Geosci Remote Sens20205853601361810.1109/TGRS.2019.2958812
– reference: Rodrigues D, de Albuquerque VHC, Papa JP (2020) A multi-objective artificial butterfly optimization approach for feature selection. Appl Soft Comput: 106442
– reference: Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat: 65–70.
– reference: HansRKaurHKaurNOpposition-based Harris Hawks optimization algorithm for feature selection in breast mass classificationJ Interdiscip Math20202319710610.1080/09720502.2020.1721670
– reference: DuT-SDSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problemsAppl Math Model201855314339373986010.1016/j.apm.2017.08.013
– reference: DuaDand C2017UCI machine learning repositoryGraff
– reference: Gharehchopogh FS, Shayanfar H, Gholizadeh H (22019) A comprehensive survey on symbiotic organisms search algorithms. Artif Intell Rev:1–48.
– reference: SohrabiMKTajikAMulti-objective feature selection for warfarin dose predictionComput Biol Chem20176912613310.1016/j.compbiolchem.2017.06.002
– reference: MitićMChaotic fruit fly optimization algorithmKnowl Based Syst20158944645810.1016/j.knosys.2015.08.010
– reference: ZhouRImproved fruit fly optimization Algorithm-based density peak clustering and its applicationsTehnicki vjesnik2017242473480
– reference: Gharehchopogh FS, Mousavi SK (2019) A new feature selection in email spam detection by particle swarm optimization and fruit fly optimization algorithms. J Comput Knowl Eng 2(2).
– reference: Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier.
– reference: MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing201726030231210.1016/j.neucom.2017.04.053
– reference: Du P, et al (2020) A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting. Appl Soft Comput 96: 106620
– reference: GhoshMFeature selection using histogram-based multi-objective GA for handwritten Devanagari numeral recognitionIntelligent engineering informatics2018Springer47147910.1007/978-981-10-7566-7_46
– reference: Ma Q, He Y, Zhou F (2016) Multi-objective fruit fly optimization algorithm for test point selection. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE.
– reference: LiuYA many-objective evolutionary algorithm using a one-by-one selection strategyIEEE Trans Cybern20174792689270210.1109/TCYB.2016.2638902
– reference: Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation. IEEE.
– reference: Rahnema N, Gharehchopogh FS (2020) An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering. Multim Tools Appl:1–26.
– reference: Nakamura RY, et al (2012) BBA: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, Patterns and Images. IEEE.
– reference: Al-TashiQBinary multi-objective grey wolf optimizer for feature selection in classificationIEEE Access2020810624710626310.1109/ACCESS.2020.3000040
– reference: MengTPanQ-KAn improved fruit fly optimization algorithm for solving the multi-dimensional knapsack problemAppl Soft Comput201750799310.1016/j.asoc.2016.11.023
– reference: WangLZhengX-LA knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problemSwarm Evolut Comput201838546310.1016/j.swevo.2017.06.001
– reference: Gauthama RamanMRAn efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machineKnowl Based Syst201713411210.1016/j.knosys.2017.07.005
– reference: Al-TashiQBinary optimization using hybrid grey wolf optimization for feature selectionIEEE Access20197394963950810.1109/ACCESS.2019.2906757
– reference: Benyamin A, Farhad SG, Saeid B (2020) Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int J Intell Syst.
– reference: Wang Q, et al. (2017) Kernel-based fuzzy C-means clustering based on fruit fly optimization algorithm. In: 2017 International Conference on Grey Systems and Intelligent Services (GSIS). IEEE.
– reference: SelvakumarBMuneeswaranKFirefly algorithm based feature selection for network intrusion detectionComput Secur20198114815510.1016/j.cose.2018.11.005
– reference: BalachandranMOptimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite designMater Des20123585486210.1016/j.matdes.2011.03.077
– reference: AcharyaNSinghSAn IWD-based feature selection method for intrusion detection systemSoft Comput201822134407441610.1007/s00500-017-2635-2
– reference: Abd Elaziz M, et al (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput:106347.
– reference: HussainKZhuWSallehMNMLong-term memory HarrisTM hawk optimization for high dimensional and optimal power flow problemsIEEE Access2019714759614761610.1109/ACCESS.2019.2946664
– reference: GongDSunJMiaoZA set-based genetic algorithm for interval many-objective optimization problemsIEEE Trans Evol Comput2016221476010.1109/TEVC.2016.2634625
– reference: Abdel-Basset M, Ding W, El-Shahat D (2020) A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev:1–45.
– reference: PanQ-KAn improved fruit fly optimization algorithm for continuous function optimization problemsKnowl Based Syst201462698310.1016/j.knosys.2014.02.021
– reference: ZhangYCost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithmExpert Syst Appl2019137465810.1016/j.eswa.2019.06.044
– reference: WangX-HMulti-objective feature selection based on artificial bee colony: an acceleration approach with variable sample sizeAppl Soft Comput20208810604110.1016/j.asoc.2019.106041
– reference: Wu L, et al (2018) Multi-objective Fruit Fly Optimization Based on Cloud Model. In: 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE.
– reference: ChoongSSWongL-PLimCPAn artificial bee colony algorithm with a modified choice function for the Traveling Salesman ProblemSwarm and Evolut Comput20194462263510.1016/j.swevo.2018.08.004
– reference: ZhouRDensity peak clustering algorithm using knowledge learning-based fruit fly optimizationInt J Comput Appl2018403110
– reference: PanW-TA new Fruit Fly Optimization Algorithm: taking the financial distress model as an exampleKnowl Based Syst201226697410.1016/j.knosys.2011.07.001
– reference: Alamiedy TA, et al. (2019) Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm. J Ambient Intell Hum Comput:1–22.
– reference: WuLA new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problemsKnowl Based Syst201814415317310.1016/j.knosys.2017.12.031
– reference: DebKA fast and elitist multi-objective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: HeidariAAHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028
– volume: 69
  start-page: 126
  year: 2017
  ident: 1369_CR33
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2017.06.002
– volume: 62
  start-page: 69
  year: 2014
  ident: 1369_CR9
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.02.021
– ident: 1369_CR6
  doi: 10.1016/j.compeleceng.2018.02.015
– volume: 7
  start-page: 39496
  year: 2019
  ident: 1369_CR54
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– ident: 1369_CR19
  doi: 10.1007/s10462-020-09860-3
– volume: 50
  start-page: 79
  year: 2017
  ident: 1369_CR8
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.11.023
– volume: 50
  start-page: 261
  issue: 2
  year: 2018
  ident: 1369_CR46
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-017-9543-9
– volume: 7
  start-page: 147596
  year: 2019
  ident: 1369_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946664
– volume: 43
  start-page: 1656
  issue: 6
  year: 2012
  ident: 1369_CR45
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2227469
– volume: 58
  start-page: 3601
  issue: 5
  year: 2020
  ident: 1369_CR34
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2958812
– volume: 18
  start-page: 420
  issue: 3
  year: 2016
  ident: 1369_CR24
  publication-title: Int J Netw Secur
– ident: 1369_CR58
– ident: 1369_CR23
  doi: 10.1007/s00366-019-00892-0
– ident: 1369_CR31
– volume: 35
  start-page: 854
  year: 2012
  ident: 1369_CR59
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.03.077
– ident: 1369_CR21
  doi: 10.1016/j.asoc.2020.106347
– volume: 134
  start-page: 1
  year: 2017
  ident: 1369_CR25
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.07.005
– ident: 1369_CR11
  doi: 10.1109/GSIS.2017.8077713
– volume: 260
  start-page: 302
  year: 2017
  ident: 1369_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 422
  start-page: 462
  year: 2018
  ident: 1369_CR55
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.09.028
– ident: 1369_CR29
  doi: 10.1007/s10044-018-0695-2
– ident: 1369_CR44
  doi: 10.1007/978-981-15-3425-6_48
– ident: 1369_CR36
  doi: 10.1109/WCICA.2018.8630556
– ident: 1369_CR38
  doi: 10.1016/j.asoc.2020.106620
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 1369_CR48
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2638902
– volume: 88
  start-page: 106041
  year: 2020
  ident: 1369_CR43
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.106041
– volume-title: and C
  year: 2017
  ident: 1369_CR57
– volume: 40
  start-page: 1
  issue: 3
  year: 2018
  ident: 1369_CR12
  publication-title: Int J Comput Appl
– ident: 1369_CR40
  doi: 10.1016/j.asoc.2020.106442
– ident: 1369_CR7
  doi: 10.1109/SIBGRAPI.2012.47
– ident: 1369_CR30
  doi: 10.1007/s12652-019-01569-8
– volume: 26
  start-page: 69
  year: 2012
  ident: 1369_CR50
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– volume: 22
  start-page: 47
  issue: 1
  year: 2016
  ident: 1369_CR49
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2634625
– ident: 1369_CR1
– volume: 38
  start-page: 54
  year: 2018
  ident: 1369_CR35
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2017.06.001
– volume: 11
  start-page: 1421
  issue: 12
  year: 2019
  ident: 1369_CR20
  publication-title: Remote Sens
  doi: 10.3390/rs11121421
– ident: 1369_CR56
– volume: 55
  start-page: 314
  year: 2018
  ident: 1369_CR15
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.08.013
– ident: 1369_CR37
– ident: 1369_CR52
– ident: 1369_CR51
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 1369_CR53
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 507
  start-page: 67
  year: 2020
  ident: 1369_CR32
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.08.040
– volume: 48
  start-page: 1
  year: 2019
  ident: 1369_CR3
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2019.03.004
– start-page: 471
  volume-title: Intelligent engineering informatics
  year: 2018
  ident: 1369_CR47
  doi: 10.1007/978-981-10-7566-7_46
– volume: 8
  start-page: 106247
  year: 2020
  ident: 1369_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000040
– volume: 81
  start-page: 148
  year: 2019
  ident: 1369_CR27
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.11.005
– volume: 89
  start-page: 446
  year: 2015
  ident: 1369_CR13
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.08.010
– volume: 137
  start-page: 46
  year: 2019
  ident: 1369_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.06.044
– volume: 144
  start-page: 153
  year: 2018
  ident: 1369_CR14
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.12.031
– ident: 1369_CR2
  doi: 10.1007/s11042-020-09639-2
– volume: 23
  start-page: 97
  issue: 1
  year: 2020
  ident: 1369_CR18
  publication-title: J Interdiscip Math
  doi: 10.1080/09720502.2020.1721670
– volume: 44
  start-page: 622
  year: 2019
  ident: 1369_CR60
  publication-title: Swarm and Evolut Comput
  doi: 10.1016/j.swevo.2018.08.004
– volume: 22
  start-page: 4407
  issue: 13
  year: 2018
  ident: 1369_CR26
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2635-2
– volume: 97
  start-page: 849
  year: 2019
  ident: 1369_CR16
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 113
  start-page: 499
  year: 2018
  ident: 1369_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.013
– volume: 24
  start-page: 309
  issue: 2
  year: 2020
  ident: 1369_CR4
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-194485
– volume: 24
  start-page: 473
  issue: 2
  year: 2017
  ident: 1369_CR10
  publication-title: Tehnicki vjesnik
– ident: 1369_CR17
– ident: 1369_CR5
  doi: 10.1002/int.22342
SSID ssj0013009
Score 2.6096878
Snippet Feature selection (FS) is a critical step in data mining, and machine learning algorithms play a crucial role in algorithms performance. It reduces the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1845
SubjectTerms Algorithms
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Control methods
Data mining
Datasets
Feature selection
Machine learning
Math. Applications in Chemistry
Mathematical and Computational Engineering
Multiple objective analysis
Optimization algorithms
Original Article
Pareto optimization
Standard data
Statistical tests
Systems Theory
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFH7R6UEPTqfG-SscvGmT0rIWjotxelqMv7JbAwx0ZlvNWv37BUo3NWqiV6CkefB4H-G97wM4MaCcxHRoy89iEhAuaMBDLAJGZSfkJgByKZ3YRNrv08GAXfuisKLOdq-fJN1JPS92s9QpNmHWXn_jhAVsGVZMuKNWsOHm9mHxdhBWiR04tYldSepLZb6f43M4WmDML8-iLtr0mv_7z03Y8OgSdavtsAVLatqCpkeayPtxYZpqMYe6rQXrH5gJt-Gyi1yqYZCL5-pIRLk5XCa-ahPx8WM-G5VPE2RAL9LK0YOiwonq2H6vU1PswH3v4u78KvCaC4E0zlia6ySlSah1JESiOilPVMpCIiQjWFoqdj0UItJUEc0pxgozTaVp60gdDqWOeLwLjWk-VXuAYiljagAdZUqZqJewWCjcUaEgZkomVRtwbfpMekJyq4sxzuZUys6UmTFl5kyZsTaczr95qeg4fh19WK9o5l2zyKLUolxiIkQbzuoVXHT_PNv-34YfwFpkSyVcsuAhNMrZqzqCVflWjorZsduy78375KE
  priority: 102
  providerName: Springer Nature
Title A multi-objective optimization algorithm for feature selection problems
URI https://link.springer.com/article/10.1007/s00366-021-01369-9
https://www.proquest.com/docview/2701614146
Volume 38
WOSCitedRecordID wos000626388400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4IeNCDKGpEkfTgTRu3-2xPBg1qYkIIPkK8bLal9RFesujvty1F1EQuXnrY7nY3O52Zr-3MNwBHGpSHAe2Z9LMgxGHGKc48wjGjIvIy7QAzIWyxiaTVot0ua7sNt9yFVc5tojXUvZEwe-SnfmLASagV-2z8hk3VKHO66kpoFKBkWBKIDd27XZwieLMQD5KYEK84cUkzNnXOELGY8FuzmA5ihtlPx7RAm78OSK3fuSz_94s3YcMhTtSYTZEtWJHDCpQd-kROt_MKrH-jJtyGqwaysYZ4xF9nNhGNtHUZuLRNlPWf9LumzwOkUS9S0vKDotxW1TH9rlBNvgP3l827i2vsii5gobVxqteTlMaeUj7nsYySLJYJ80IuWEiE4WJXPc59RWWoMkqIJExRoa9FQnk9ofws2IXicDSUe4ACIQKqER1lUmq3F7OASxJJj4d6SCZkFcj8j6fCMZKbwhj99ItL2Uop1VJKrZRSVoXjr2fGMz6OpXfX5qJJnW7m6UIuVTiZC3fR_fdo-8tHO4A13-RG2OjAGhSnk3d5CKviY_qST-pQOm-22p06FG4SXLfzVLft6FG3nduHT0cD7ME
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bLwQxFD5hSfDgLpZFH3iiMbedaR9ExD3LxgOJtzHtti5hF7OIP-U3Ou10LBLePHidTk_S6XcunZ5zPoBlDMqjkLVM-VkY0SgTjGaeLyhnsu5l6AAzKS3ZRNJssvNzftIHb2UtjEmrLG2iNdStjjT_yNeDxAQnESr25v0DNaxR5na1pNAoYNFQry94ZMs3Dndwf1eCYG_3dPuAOlYBKhFuXTwwMRZ7WgdCxKqeZLFKuBcJySNfmmbjuiVEoJmKdMZ8X_lcM4nP6lJ7LamDLES5_TCAK0yMXjUS2ru18IqUEj8xKWVx4op0bKmeafxi0n3N4T2MOeVfHWEvuv12IWv93N7Yf_tC4zDqImqyVajABPSp9iSMueiaONuVT8LIp9aLU7C_RWwuJe2Im8Lmkw5azztXlkqy20tcW_fqjmBUT7Sy_U9JblmDzLgj4smn4exPFjcDlXanrWaBhFKGDCNWxpVCtx7zUCi_rjwRoUguVRX8codT6TquG-KP2_SjV7RFRYqoSC0qUl6F1Y8590W_kV_frpVQSJ3tydMeDqqwVoKpN_yztLnfpS3B0MHp8VF6dNhszMNwYOpAbCZkDSrdxye1AIPyuXudPy5arSBw8dcgewe3akgp
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LLwRBEK54RTh4i2XRB05MzHu6DyIbLEI2eyARlzHd2-2RtYtZxF_z61T39Fgk3Bxcp2cqmemvq6qnv6oPYA2T8jCgLV1-FoROmHHqZK7HHUZF5GYYADMhjNhE0mjQ83PWHIC3shZG0ypLn2gcdasr9D_yLT_RyUmoBVqUpUU09-o79w-OVpDSJ62lnEYBkWP5-oLbt3z7aA_net336_unu4eOVRhwBEKvh5snSmNXKZ_zWEZJFsuEuSEXLPSEbjyuWpz7ispQZdTzpMcUFXgtEsptCeVnAdodhOEE95iaTtiMLvonGG5BL_ESTS-LE1uwY8r2dBMYTf3VG_kgZg77GhT7me63w1kT8-qT__lrTcGEzbRJrVga0zAgOzMwabNuYn1aPgPjn1oyzsJBjRiOpdPlt0UsIF30qne2XJVk7St8t971HcFsnyhp-qKS3KgJ6XEr0JPPwdmfvNw8DHW6HbkAJBAioJjJUiYlhvuYBVx6kXR5iCaZkBXwytlOhe3ErgVB2ulHD2mDkBQRkhqEpKwCGx_P3Bd9SH69u1rCIrU-KU_7mKjAZgms_vDP1hZ_t7YKo4it9OSocbwEY74uDzEEySoM9R6f5DKMiOfeTf64YhYIgcu_xtg7gfNRTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+optimization+algorithm+for+feature+selection+problems&rft.jtitle=Engineering+with+computers&rft.au=Abdollahzadeh%2C+Benyamin&rft.au=Gharehchopogh%2C+Farhad+Soleimanian&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=38&rft.spage=1845&rft.epage=1863&rft_id=info:doi/10.1007%2Fs00366-021-01369-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon