The lower bounded inverse optimal value problem on minimum spanning tree under unit l∞ norm
We consider the lower bounded inverse optimal value problem on minimum spanning tree under unit l ∞ norm. Given an edge weighted connected undirected network G = ( V , E , w ) , a spanning tree T 0 , a lower bound vector l and a value K , we aim to find a new weight vector w ¯ respecting the lower b...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 79; číslo 3; s. 757 - 777 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the lower bounded inverse optimal value problem on minimum spanning tree under unit
l
∞
norm. Given an edge weighted connected undirected network
G
=
(
V
,
E
,
w
)
, a spanning tree
T
0
, a lower bound vector
l
and a value
K
, we aim to find a new weight vector
w
¯
respecting the lower bound such that
T
0
is a minimum spanning tree under the vector
w
¯
with weight
K
, and the objective is to minimize the modification cost under unit
l
∞
norm. We present a mathematical model of the problem. After analyzing optimality conditions of the problem, we develop a strongly polynomial time algorithm with running time
O
(|
V
||
E
|). Finally, we give an example to demonstrate the algorithm and present the numerical experiments. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-020-00947-3 |