The lower bounded inverse optimal value problem on minimum spanning tree under unit l∞ norm

We consider the lower bounded inverse optimal value problem on minimum spanning tree under unit l ∞ norm. Given an edge weighted connected undirected network G = ( V , E , w ) , a spanning tree T 0 , a lower bound vector l and a value K , we aim to find a new weight vector w ¯ respecting the lower b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 79; číslo 3; s. 757 - 777
Hlavní autoři: Zhang, Binwu, Guan, Xiucui, Pardalos, Panos M., Wang, Hui, Zhang, Qiao, Liu, Yan, Chen, Shuyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2021
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the lower bounded inverse optimal value problem on minimum spanning tree under unit l ∞ norm. Given an edge weighted connected undirected network G = ( V , E , w ) , a spanning tree T 0 , a lower bound vector l and a value K , we aim to find a new weight vector w ¯ respecting the lower bound such that T 0 is a minimum spanning tree under the vector w ¯ with weight K , and the objective is to minimize the modification cost under unit l ∞ norm. We present a mathematical model of the problem. After analyzing optimality conditions of the problem, we develop a strongly polynomial time algorithm with running time O (| V || E |). Finally, we give an example to demonstrate the algorithm and present the numerical experiments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-020-00947-3