A Novel Video Face Verification Algorithm Based on TPLBP and the 3D Siamese-CNN

In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 8; číslo 12; s. 1544
Hlavní autoři: Wang, Yu, Ma, Shuyang, Shen, Xuanjing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2019
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese convolutional neural network is proposed in this paper. The proposed method takes the TPLBP texture feature which has excellent performance in face analysis as the input of the network. In order to extract the inter-frame information of the video, the texture feature maps of the multi-frames are stacked, and then a shallow Siamese 3D convolutional neural network is used to realize dimension reduction. The similarity of high-level features of the video pair is solved by the shallow Siamese 3D convolutional neural network, and then mapped to the interval of 0 to 1 by linear transformation. The classification result can be obtained with the threshold of 0.5. Through an experiment on the YouTube Face database, the proposed algorithm got higher accuracy with less computational consumption than baseline methods and deep learning methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics8121544