Globally Asymptotically Stable Equilibrium Points in Kukles Systems

The problem of determining the basin of attraction of equilibrium points is of great importance for applications of stability theory. In this article, we address the global asymptotic stability problem of an equilibrium point of an ordinary differential equation on the plane. More precisely, we stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems Jg. 19; H. 3
Hauptverfasser: Dias, Fabio Scalco, Mello, Luis Fernando
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2020
Springer Nature B.V
Schlagworte:
ISSN:1575-5460, 1662-3592
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The problem of determining the basin of attraction of equilibrium points is of great importance for applications of stability theory. In this article, we address the global asymptotic stability problem of an equilibrium point of an ordinary differential equation on the plane. More precisely, we study equilibrium points of Kukles systems from the global asymptotic stability point of view. First of all, we classify the Kukles systems satisfying the assumptions: the origin is the unique equilibrium point which is locally asymptotically stable, and the divergence is negative except possibly at the origin. Then, for each of such Kukles system, we prove that the origin is globally asymptotically stable. Poincaré compactification is used to study the systems on the complements of compact sets.
AbstractList The problem of determining the basin of attraction of equilibrium points is of great importance for applications of stability theory. In this article, we address the global asymptotic stability problem of an equilibrium point of an ordinary differential equation on the plane. More precisely, we study equilibrium points of Kukles systems from the global asymptotic stability point of view. First of all, we classify the Kukles systems satisfying the assumptions: the origin is the unique equilibrium point which is locally asymptotically stable, and the divergence is negative except possibly at the origin. Then, for each of such Kukles system, we prove that the origin is globally asymptotically stable. Poincaré compactification is used to study the systems on the complements of compact sets.
ArticleNumber 94
Author Mello, Luis Fernando
Dias, Fabio Scalco
Author_xml – sequence: 1
  givenname: Fabio Scalco
  orcidid: 0000-0003-0635-4056
  surname: Dias
  fullname: Dias, Fabio Scalco
  email: scalco@unifei.edu.br
  organization: Instituto de Matemática e Computação, Universidade Federal de Itajubá
– sequence: 2
  givenname: Luis Fernando
  surname: Mello
  fullname: Mello, Luis Fernando
  organization: Instituto de Matemática e Computação, Universidade Federal de Itajubá
BookMark eNp9kF9LwzAUxYNMcJt-AZ8KPkfzr032OMac4kBh-hySNpXMtNmS9KHf3roKgg97uvfC-Z1zOTMwaX1rALjF6B4jxB8iJpQVEBEEEWKUwP4CTHFREEjzBZkMe85zmLMCXYFZjHuECsIpmYLVxnmtnOuzZeybQ_LJlqdzl5R2JlsfO-usDrZrsjdv2xQz22Yv3ZczMdv1MZkmXoPLWrlobn7nHHw8rt9XT3D7unleLbewpHiRIC2rmi40M5xpoWtGqdC8oLmoNOdUkDrXhTCkFBWvOBOU4UpVihjKGNcGFXQO7kbfQ_DHzsQk974L7RApCRscMFsINqjIqCqDjzGYWh6CbVToJUbypyw5liWHsuSpLNkPkPgHlTapZH2bgrLuPEpHNA457acJf1-dob4Bx5SBIQ
CitedBy_id crossref_primary_10_1016_j_matcom_2025_04_045
crossref_primary_10_1016_j_nonrwa_2024_104254
Cites_doi 10.1016/j.camwa.2010.09.034
10.1007/978-1-4612-4192-8
10.1016/j.na.2004.01.010
10.1017/S0308210500030213
10.1007/BF01077471
10.1016/S0898-1221(02)00098-6
10.1016/S0294-1449(16)30147-0
10.1112/blms/22.1.1
10.1109/CDC.2011.6161499
10.4064/ap-62-1-45-74
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
DOI 10.1007/s12346-020-00432-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1662-3592
ExternalDocumentID 10_1007_s12346_020_00432_y
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2019/07316-0
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais
  grantid: APQ-01158-17
  funderid: http://dx.doi.org/10.13039/501100004901
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3J0
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DC1
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-3cdf39b4e74b8bf4338b76358db77382f5b68e2c8d7d748341dada2e3447be063
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580498400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1575-5460
IngestDate Thu Sep 25 00:53:06 EDT 2025
Sat Nov 29 06:14:54 EST 2025
Tue Nov 18 20:49:49 EST 2025
Fri Feb 21 02:34:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Global asymptotic stability
Poincaré compactification
34D23
34A26
Kukles system
34D05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3cdf39b4e74b8bf4338b76358db77382f5b68e2c8d7d748341dada2e3447be063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0635-4056
PQID 2473814984
PQPubID 2044188
ParticipantIDs proquest_journals_2473814984
crossref_primary_10_1007_s12346_020_00432_y
crossref_citationtrail_10_1007_s12346_020_00432_y
springer_journals_10_1007_s12346_020_00432_y
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Qualitative theory of dynamical systems
PublicationTitleAbbrev Qual. Theory Dyn. Syst
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References ChiconeCOrdinary Differential Equations with Applications1999New YorkSpringer0937.34001
Ahmadi, A.A., Krstic, M., Parrilo, P.A.: A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function. In: Proceedings of the IEEE Conference on Decision and Control, pp. 7579–7580 (2011)
ChamberlandMLlibreJŚwirszczGWeakened Markus-Yamabe conditions for 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-dimensional global asymptotic stabilityNonlinear Anal.200459951958209637010.1016/j.na.2004.01.010
DumortierFLlibreJArtésJCQualitative Theory of Planar Differential Systems2006BerlinSpringer1110.34002
HubbardJHWestBHDifferential Equations: A Dynamical Systems Approach. Higher-Dimensional Systems1995New YorkSpringer10.1007/978-1-4612-4192-8
ChristopherCJInvariant algebraic curves and conditions for a centreProc. R. Soc. Edinburgh Sect. A199412412091229131319910.1017/S0308210500030213
FeßlerRA proof of the two-dimensional Markus-Yamabe stability conjecture and a generalizationAnn. Polon. Math.1995624574134821710.4064/ap-62-1-45-74
GinéJLlibreJVallsCCenters for the Kukles homogeneous systems with even degreeJ. Appl. Anal. Comput.2017715341548372393507247212
Glutsyuk, A.A.: The asymptotic stability of the linearization of a vector field on the plane with a singular point implies global stability, Funktsional. Anal. i Prilozhen. 29, 17–30 (1995); translation in Funct. Anal. Appl. 29, 238–247 (1995)
GutiérrezCA solution to the bidimensional global asymptotic stability conjectureAnn. Inst. H. Poincaré Anal. Non Linéaire199512627671136054010.1016/S0294-1449(16)30147-0
GinéJConditions for the existence of a center for the Kukles homogeneous systemsComput. Math. Appl.20024312611269190635310.1016/S0898-1221(02)00098-6
MarkusLYamabeHGlobal stability criteria for differential systemsOsaka Math. J.1960123053171260190096.28802
PearsonJMLloydNGKukles revisited: Advances in computing techniquesComput. Math. Appl.20106027972805273432110.1016/j.camwa.2010.09.034
KuklesISSur quelques cas de distinction entre un foyer et un centreDokl. Akad. Nauk. SSSR194442208211113560063.03332
GaikoVGlobal bifurcation analysis of the Kukles cubic systemInt. J. Dyn. Syst. Differ. Equ.2018832633638913491442.34069
JinXWangDOn the conditions of Kukles for the existence of a centreBull. London Math. Soc.19902214102676410.1112/blms/22.1.1
432_CR1
cr-split#-432_CR10.2
M Chamberland (432_CR2) 2004; 59
IS Kukles (432_CR14) 1944; 42
cr-split#-432_CR10.1
JH Hubbard (432_CR12) 1995
C Chicone (432_CR3) 1999
F Dumortier (432_CR5) 2006
L Markus (432_CR15) 1960; 12
J Giné (432_CR8) 2002; 43
CJ Christopher (432_CR4) 1994; 124
J Giné (432_CR9) 2017; 7
V Gaiko (432_CR7) 2018; 8
C Gutiérrez (432_CR11) 1995; 12
R Feßler (432_CR6) 1995; 62
JM Pearson (432_CR16) 2010; 60
X Jin (432_CR13) 1990; 22
References_xml – reference: Ahmadi, A.A., Krstic, M., Parrilo, P.A.: A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function. In: Proceedings of the IEEE Conference on Decision and Control, pp. 7579–7580 (2011)
– reference: Glutsyuk, A.A.: The asymptotic stability of the linearization of a vector field on the plane with a singular point implies global stability, Funktsional. Anal. i Prilozhen. 29, 17–30 (1995); translation in Funct. Anal. Appl. 29, 238–247 (1995)
– reference: FeßlerRA proof of the two-dimensional Markus-Yamabe stability conjecture and a generalizationAnn. Polon. Math.1995624574134821710.4064/ap-62-1-45-74
– reference: GutiérrezCA solution to the bidimensional global asymptotic stability conjectureAnn. Inst. H. Poincaré Anal. Non Linéaire199512627671136054010.1016/S0294-1449(16)30147-0
– reference: ChamberlandMLlibreJŚwirszczGWeakened Markus-Yamabe conditions for 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-dimensional global asymptotic stabilityNonlinear Anal.200459951958209637010.1016/j.na.2004.01.010
– reference: GinéJLlibreJVallsCCenters for the Kukles homogeneous systems with even degreeJ. Appl. Anal. Comput.2017715341548372393507247212
– reference: MarkusLYamabeHGlobal stability criteria for differential systemsOsaka Math. J.1960123053171260190096.28802
– reference: GaikoVGlobal bifurcation analysis of the Kukles cubic systemInt. J. Dyn. Syst. Differ. Equ.2018832633638913491442.34069
– reference: PearsonJMLloydNGKukles revisited: Advances in computing techniquesComput. Math. Appl.20106027972805273432110.1016/j.camwa.2010.09.034
– reference: KuklesISSur quelques cas de distinction entre un foyer et un centreDokl. Akad. Nauk. SSSR194442208211113560063.03332
– reference: ChristopherCJInvariant algebraic curves and conditions for a centreProc. R. Soc. Edinburgh Sect. A199412412091229131319910.1017/S0308210500030213
– reference: HubbardJHWestBHDifferential Equations: A Dynamical Systems Approach. Higher-Dimensional Systems1995New YorkSpringer10.1007/978-1-4612-4192-8
– reference: JinXWangDOn the conditions of Kukles for the existence of a centreBull. London Math. Soc.19902214102676410.1112/blms/22.1.1
– reference: GinéJConditions for the existence of a center for the Kukles homogeneous systemsComput. Math. Appl.20024312611269190635310.1016/S0898-1221(02)00098-6
– reference: ChiconeCOrdinary Differential Equations with Applications1999New YorkSpringer0937.34001
– reference: DumortierFLlibreJArtésJCQualitative Theory of Planar Differential Systems2006BerlinSpringer1110.34002
– volume: 7
  start-page: 1534
  year: 2017
  ident: 432_CR9
  publication-title: J. Appl. Anal. Comput.
– volume: 42
  start-page: 208
  year: 1944
  ident: 432_CR14
  publication-title: Dokl. Akad. Nauk. SSSR
– volume: 60
  start-page: 2797
  year: 2010
  ident: 432_CR16
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.09.034
– volume-title: Differential Equations: A Dynamical Systems Approach. Higher-Dimensional Systems
  year: 1995
  ident: 432_CR12
  doi: 10.1007/978-1-4612-4192-8
– volume: 59
  start-page: 951
  year: 2004
  ident: 432_CR2
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2004.01.010
– volume-title: Ordinary Differential Equations with Applications
  year: 1999
  ident: 432_CR3
– volume-title: Qualitative Theory of Planar Differential Systems
  year: 2006
  ident: 432_CR5
– volume: 124
  start-page: 1209
  year: 1994
  ident: 432_CR4
  publication-title: Proc. R. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210500030213
– ident: #cr-split#-432_CR10.2
  doi: 10.1007/BF01077471
– volume: 12
  start-page: 305
  year: 1960
  ident: 432_CR15
  publication-title: Osaka Math. J.
– volume: 8
  start-page: 326
  year: 2018
  ident: 432_CR7
  publication-title: Int. J. Dyn. Syst. Differ. Equ.
– volume: 43
  start-page: 1261
  year: 2002
  ident: 432_CR8
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(02)00098-6
– volume: 12
  start-page: 627
  year: 1995
  ident: 432_CR11
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/S0294-1449(16)30147-0
– volume: 22
  start-page: 1
  year: 1990
  ident: 432_CR13
  publication-title: Bull. London Math. Soc.
  doi: 10.1112/blms/22.1.1
– ident: 432_CR1
  doi: 10.1109/CDC.2011.6161499
– volume: 62
  start-page: 45
  year: 1995
  ident: 432_CR6
  publication-title: Ann. Polon. Math.
  doi: 10.4064/ap-62-1-45-74
– ident: #cr-split#-432_CR10.1
  doi: 10.1007/BF01077471
SSID ssj0062732
Score 2.1930003
Snippet The problem of determining the basin of attraction of equilibrium points is of great importance for applications of stability theory. In this article, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asymptotic properties
Difference and Functional Equations
Differential equations
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Ordinary differential equations
Stability
Title Globally Asymptotically Stable Equilibrium Points in Kukles Systems
URI https://link.springer.com/article/10.1007/s12346-020-00432-y
https://www.proquest.com/docview/2473814984
Volume 19
WOSCitedRecordID wos000580498400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1662-3592
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062732
  issn: 1575-5460
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTKXnwTQtbmi7p4xgbgjoG6thbaT4Gxa2bayv0vzfJ2hVFBX0sTUJ7l8v9Lpf7BeBaeUJiRVxHYs91CBfY4Uwbnu8b8KwkZbbqffRABwM2HvvDoigsKU-7lylJu1JXxW7YJebArKmEJi528k3Y8gzbjInRn0bl-tvWDtnmODUQcTzSbhalMt-P8dkdVRjzS1rUepv-_v--8wD2CnSJOqvpcAgbKj6C3cc1NWtyDN0Vy_80R50kny3Sud3M1o8advKpQr23LLJ1ANkMDedRnCYoitF99jpVCSr4zU_gpd977t45xU0KjtAmljqukBPX50RRwhmfEB2XcsNExySn1GV44vE2U1gwSSU124stGcoQK0MHyJVGMadQi-exOgPENETSICbUyIMTz6N-KJUvhdS4zheiyerQKgUaiIJm3Nx2MQ0qgmQjoEALKLACCvI63Kz7LFYkG7-2bpR6CgqDSwJM9H_oaI-ROtyWeqle_zza-d-aX8AONqq1B1oaUEuXmbqEbfGeRsnyyk7ED0A01r0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah9808KWpmv6OMbGZBcGzrG30lwGw66bayv035tk7Yqigj6WJqE9uZzv5OT7AnAvbMaRwJbJkW2ZmDJkUiInnusq8Cy4QzTrfdxzBgMymbjDjBQW5afd85SkXqkLshuysDowq5jQ2EJmug07WF2zo2L053G-_talQ9Y5TglETBvXqxlV5vs2PrujAmN-SYtqb9M--t93HsNhhi6Nxno4nMCWCE_hoL-RZo3OoLlW-Q9SoxGl82W80JvZ8lHCThoIo_WWzDQPIJkbw8UsjCNjFhrd5DUQkZHpm5_DS7s1anbM7CYFk8kpFpsW41PLpVg4mBI6xTIupUqJjnDqOBZBU5vWiUCMcIc7anuxxn3uI6HkAKmQKOYCSuEiFJdgEAmRJIjxJfKg2LYd1-fC5YxLXOcyViVlqOUG9VgmM65uuwi8QiBZGciTBvK0gby0DA-bOsu1yMavpSt5P3nZhIs8hOV_yGiP4DI85v1SvP65tau_Fb-Dvc6o3_N6T4PuNewj1c36cEsFSvEqETewy97jWbS61YPyA1qF2aE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5RNEYfvBtR1D34pgvQdax7JAjRgIR4Ibwt9EJChIFsM9m_t-02pkZNjI_LumY7bXe-03O-rwCXwmYcCWyZHNmWiSlDJiVy4bmuAs-CO0Sz3vsdp9slg4Hb-8Di19XuWUoy4TQolSY_LM_5qJwT35CFVfGsYkVjC5nxKqxhGcmooq6Hx372L65J56zznRKUmDauVVLazPd9fHZNOd78kiLVnqe18_933oXtFHUa9WSa7MGK8Pdh634p2RocQCNR_5_ERj2Ip_Nwpje55aWEo3QijOZrNNb8gGhq9GZjPwyMsW-0o5eJCIxU9_wQnlvNp8atmZ6wYDK59ELTYnxkuRQLB1NCR1jGq1Qp1BFOHcciaGTTGhGIEe5wR207VvmQD5FQMoFUSHRzBAV_5otjMIiEThLcDCUiodi2HXfIhcsZl3jPZaxCilDNjOuxVH5cnYIx8XLhZGUgTxrI0wby4iJcLZ-ZJ-Ibv7YuZWPmpQsx8BCW3yGjQIKLcJ2NUX77595O_tb8AjZ6Ny2vc9dtn8ImUqOsa15KUAgXkTiDdfYWjoPFuZ6f7yGL4oU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Globally+Asymptotically+Stable+Equilibrium+Points+in+Kukles+Systems&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Dias%2C+Fabio+Scalco&rft.au=Mello%2C+Luis+Fernando&rft.date=2020-12-01&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=19&rft.issue=3&rft_id=info:doi/10.1007%2Fs12346-020-00432-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12346_020_00432_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon