Globally Asymptotically Stable Equilibrium Points in Kukles Systems
The problem of determining the basin of attraction of equilibrium points is of great importance for applications of stability theory. In this article, we address the global asymptotic stability problem of an equilibrium point of an ordinary differential equation on the plane. More precisely, we stud...
Gespeichert in:
| Veröffentlicht in: | Qualitative theory of dynamical systems Jg. 19; H. 3 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1575-5460, 1662-3592 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The problem of determining the basin of attraction of equilibrium points is of great importance for applications of stability theory. In this article, we address the global asymptotic stability problem of an equilibrium point of an ordinary differential equation on the plane. More precisely, we study equilibrium points of Kukles systems from the global asymptotic stability point of view. First of all, we classify the Kukles systems satisfying the assumptions: the origin is the unique equilibrium point which is locally asymptotically stable, and the divergence is negative except possibly at the origin. Then, for each of such Kukles system, we prove that the origin is globally asymptotically stable. Poincaré compactification is used to study the systems on the complements of compact sets. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1575-5460 1662-3592 |
| DOI: | 10.1007/s12346-020-00432-y |