Globally Variance-Constrained Sparse Representation and Its Application in Image Set Coding

Sparse representation leads to an efficient way to approximately recover a signal by the linear composition of a few bases from a learnt dictionary based on which various successful applications have been achieved. However, in the scenario of data compression, its efficiency and popularity are hinde...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 27; číslo 8; s. 3753 - 3765
Hlavní autori: Zhang, Xiang, Sun, Jiarui, Ma, Siwei, Lin, Zhouchen, Zhang, Jian, Wang, Shiqi, Gao, Wen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.08.2018
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sparse representation leads to an efficient way to approximately recover a signal by the linear composition of a few bases from a learnt dictionary based on which various successful applications have been achieved. However, in the scenario of data compression, its efficiency and popularity are hindered. It is because of the fact that encoding sparsely distributed coefficients may consume more bits for representing the index of nonzero coefficients. Therefore, introducing an accurate rate constraint in sparse coding and dictionary learning becomes meaningful, which has not been fully exploited in the context of sparse representation. According to the Shannon entropy inequality, the variance of Gaussian distributed data bound its entropy, indicating the actual bitrate can be well estimated by its variance. Hence, a globally variance-constrained sparse representation (GVCSR) model is proposed in this paper, where a variance-constrained rate term is introduced to the optimization process. Specifically, we employ the alternating direction method of multipliers (ADMMs) to solve the non-convex optimization problem for sparse coding and dictionary learning, both of them have shown the state-of-the-art rate-distortion performance for image representation. Furthermore, we investigate the potential of applying the GVCSR algorithm in the practical image set compression, where the optimized dictionary is trained to efficiently represent the images captured in similar scenarios by implicitly utilizing inter-image correlations. Experimental results have demonstrated superior rate-distortion performance against the state-of-the-art methods.
AbstractList Sparse representation leads to an efficient way to approximately recover a signal by the linear composition of a few bases from a learnt dictionary based on which various successful applications have been achieved. However, in the scenario of data compression, its efficiency and popularity are hindered. It is because of the fact that encoding sparsely distributed coefficients may consume more bits for representing the index of nonzero coefficients. Therefore, introducing an accurate rate constraint in sparse coding and dictionary learning becomes meaningful, which has not been fully exploited in the context of sparse representation. According to the Shannon entropy inequality, the variance of Gaussian distributed data bound its entropy, indicating the actual bitrate can be well estimated by its variance. Hence, a globally variance-constrained sparse representation (GVCSR) model is proposed in this paper, where a variance-constrained rate term is introduced to the optimization process. Specifically, we employ the alternating direction method of multipliers (ADMMs) to solve the non-convex optimization problem for sparse coding and dictionary learning, both of them have shown the state-of-the-art rate-distortion performance for image representation. Furthermore, we investigate the potential of applying the GVCSR algorithm in the practical image set compression, where the optimized dictionary is trained to efficiently represent the images captured in similar scenarios by implicitly utilizing inter-image correlations. Experimental results have demonstrated superior rate-distortion performance against the state-of-the-art methods.
Sparse representation leads to an efficient way to approximately recover a signal by the linear composition of a few bases from a learnt dictionary based on which various successful applications have been achieved. However, in the scenario of data compression, its efficiency and popularity are hindered. It is because of the fact that encoding sparsely distributed coefficients may consume more bits for representing the index of nonzero coefficients. Therefore, introducing an accurate rate constraint in sparse coding and dictionary learning becomes meaningful, which has not been fully exploited in the context of sparse representation. According to the Shannon entropy inequality, the variance of Gaussian distributed data bound its entropy, indicating the actual bitrate can be well estimated by its variance. Hence, a globally variance-constrained sparse representation (GVCSR) model is proposed in this paper, where a variance-constrained rate term is introduced to the optimization process. Specifically, we employ the alternating direction method of multipliers (ADMMs) to solve the non-convex optimization problem for sparse coding and dictionary learning, both of them have shown the state-of-the-art rate-distortion performance for image representation. Furthermore, we investigate the potential of applying the GVCSR algorithm in the practical image set compression, where the optimized dictionary is trained to efficiently represent the images captured in similar scenarios by implicitly utilizing inter-image correlations. Experimental results have demonstrated superior rate-distortion performance against the state-of-the-art methods.Sparse representation leads to an efficient way to approximately recover a signal by the linear composition of a few bases from a learnt dictionary based on which various successful applications have been achieved. However, in the scenario of data compression, its efficiency and popularity are hindered. It is because of the fact that encoding sparsely distributed coefficients may consume more bits for representing the index of nonzero coefficients. Therefore, introducing an accurate rate constraint in sparse coding and dictionary learning becomes meaningful, which has not been fully exploited in the context of sparse representation. According to the Shannon entropy inequality, the variance of Gaussian distributed data bound its entropy, indicating the actual bitrate can be well estimated by its variance. Hence, a globally variance-constrained sparse representation (GVCSR) model is proposed in this paper, where a variance-constrained rate term is introduced to the optimization process. Specifically, we employ the alternating direction method of multipliers (ADMMs) to solve the non-convex optimization problem for sparse coding and dictionary learning, both of them have shown the state-of-the-art rate-distortion performance for image representation. Furthermore, we investigate the potential of applying the GVCSR algorithm in the practical image set compression, where the optimized dictionary is trained to efficiently represent the images captured in similar scenarios by implicitly utilizing inter-image correlations. Experimental results have demonstrated superior rate-distortion performance against the state-of-the-art methods.
Author Wen Gao
Jiarui Sun
Jian Zhang
Shiqi Wang
Xiang Zhang
Zhouchen Lin
Siwei Ma
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0002-6002-1503
  surname: Zhang
  fullname: Zhang, Xiang
– sequence: 2
  givenname: Jiarui
  surname: Sun
  fullname: Sun, Jiarui
– sequence: 3
  givenname: Siwei
  orcidid: 0000-0002-2731-5403
  surname: Ma
  fullname: Ma, Siwei
– sequence: 4
  givenname: Zhouchen
  orcidid: 0000-0003-1493-7569
  surname: Lin
  fullname: Lin, Zhouchen
– sequence: 5
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
– sequence: 6
  givenname: Shiqi
  surname: Wang
  fullname: Wang, Shiqi
– sequence: 7
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29698207$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1v1DAQhi1URD_gjoSEfOSSZWwnjn2sVqWsVAlECxcO1sQZV0ZZJ9jZQ_89WWXLgQOnGY2e95XmuWRnaUzE2FsBGyHAfnzYfd1IEGYjjVRNrV-wC2FrUQHU8mzZoWmrVtT2nF2W8gtA1I3Qr9i5tNoaCe0F-3k7jB0OwxP_gTli8lRtx1TmjDFRz-8nzIX4N5oyFUozznFMHFPPd3Ph19M0RL_eYuK7PT4Sv6eZb8c-psfX7GXAodCb07xi3z_dPGw_V3dfbnfb67vKK2HnSjWdV16h9apDrZXAnjSoTlMHgbrQNuhb8K33Er0JCCHoEIyRCKY3Qqor9mHtnfL4-0BldvtYPA0DJhoPxUlQUllrjV3Q9yf00O2pd1OOe8xP7lnIAugV8HksJVNwPq5fH5UMToA7mneLeXc0707mlyD8E3zu_k_k3RqJRPQXN0oJY4X6Ax38jvM
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TCYB_2019_2899005
crossref_primary_10_1109_TMM_2020_2967646
crossref_primary_10_1016_j_patrec_2019_10_026
crossref_primary_10_1109_ACCESS_2024_3368699
crossref_primary_10_3390_electronics8030303
crossref_primary_10_1109_TCC_2022_3218784
crossref_primary_10_1109_TCC_2021_3106103
crossref_primary_10_1016_j_jvcir_2020_102847
Cites_doi 10.1109/ICASSP.2015.7178168
10.1109/TIP.2006.881969
10.1016/0898-1221(76)90003-1
10.1109/ICMEW.2016.7574708
10.1109/ISCAS.2012.6271583
10.1109/TIP.2011.2181525
10.1137/140998135
10.1109/VCIP.2013.6706334
10.1109/ICASSP.2011.5946782
10.1109/ICCV.2009.5459452
10.1109/CVPR.2008.4587706
10.1109/TSP.2010.2040671
10.1109/JPROC.2010.2044470
10.1109/ICASSP.2014.6853576
10.1016/j.dsp.2006.02.002
10.1109/ICCV.2013.34
10.1561/2200000016
10.1109/DCC.2016.18
10.1109/ICIP.2001.958518
10.1109/TIP.2014.2323127
10.1109/TIP.2016.2629447
10.1109/LSP.2013.2258912
10.1109/ICIP.1998.723617
10.1109/ISCAS.2015.7168816
10.1109/ISCAS.2015.7168873
10.1016/j.sigpro.2013.09.025
10.1109/TCSVT.2014.2317886
10.1109/TIP.2016.2598483
10.1007/s11277-013-1577-y
10.1016/j.sigpro.2016.05.036
10.1016/j.jvcir.2008.03.001
10.1109/ICASSP.2014.6853954
10.1016/j.acha.2008.07.002
10.1109/ICCV.2011.6126377
10.1109/79.733497
10.1109/TCSVT.2012.2221191
10.1109/TIP.2007.903259
10.1109/TIP.2016.2623487
10.1109/TCSVT.2014.2302380
10.1109/PACRIM.2015.7334808
10.1007/s10915-010-9408-8
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIT.2009.2016006
10.1109/SMC.2015.276
10.1109/VCIP.2013.6706358
10.1109/TSP.2009.2036477
10.1109/JSTSP.2011.2135332
10.1109/ICASSP.1999.760624
10.1109/TIP.2013.2256917
10.1109/TSP.2006.881199
10.1109/ICME.2013.6607570
10.1109/JETCAS.2014.2298291
10.1038/381607a0
10.1109/TIT.2007.909108
10.1109/JSAC.2014.2328171
10.1109/MMSP.2012.6343419
10.1109/TCSVT.2015.2511838
10.1145/103085.103089
10.1109/TIP.2013.2287996
10.1109/TIP.2013.2266579
10.1007/978-1-4419-7011-4
10.1109/TIP.2015.2500034
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TIP.2018.2823546
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3765
ExternalDocumentID 29698207
10_1109_TIP_2018_2823546
8331891
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  grantid: 2015CB352502
– fundername: Qualcomm
  funderid: 10.13039/100005144
– fundername: National Postdoctoral Program for Innovative Talents
  grantid: BX201600006
– fundername: National Natural Science Foundation of China
  grantid: 61625301; 61731018
  funderid: 10.13039/501100001809
– fundername: Microsoft Research Asia
  funderid: 10.13039/100004318
– fundername: National Natural Science Foundation of China
  grantid: 61571017
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7X8
ID FETCH-LOGICAL-c319t-35bc3c3a9c3ba6631ade603b6eb0febf75ac70c7cc2ac8fa0ff6ff882a08d8123
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430967600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Mon Sep 29 05:16:24 EDT 2025
Wed Feb 19 02:40:57 EST 2025
Sat Nov 29 03:21:08 EST 2025
Tue Nov 18 21:52:29 EST 2025
Wed Aug 27 02:49:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-35bc3c3a9c3ba6631ade603b6eb0febf75ac70c7cc2ac8fa0ff6ff882a08d8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1493-7569
0000-0002-2731-5403
0000-0002-6002-1503
PMID 29698207
PQID 2032399989
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIP_2018_2823546
crossref_primary_10_1109_TIP_2018_2823546
proquest_miscellaneous_2032399989
ieee_primary_8331891
pubmed_primary_29698207
PublicationCentury 2000
PublicationDate 2018-Aug.
2018-8-00
2018-Aug
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref12
horev (ref41) 2012
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
zhang (ref19) 2012
lin (ref59) 2011
ref17
ref16
ref18
ref50
kim (ref77) 1997
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref5
ref40
ref35
ref37
ref36
ref75
ref31
ref74
ref33
ref76
ref32
salvatierra (ref38) 2010
ref1
ref39
kodak (ref61) 0
mairal (ref34) 2010; 11
zhang (ref30) 2017
olshausen (ref3) 1996; 381
ref71
ref70
larson (ref60) 0
ref73
feng (ref56) 2014
hyvärinen (ref6) 2009; 39
ref72
shannon (ref51) 1974
taubman (ref2) 2012; 642
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
ref21
ref27
ref29
liu (ref28) 2013
ref62
ryen (ref22) 2002; 3
References_xml – ident: ref73
  doi: 10.1109/ICASSP.2015.7178168
– ident: ref10
  doi: 10.1109/TIP.2006.881969
– ident: ref54
  doi: 10.1016/0898-1221(76)90003-1
– ident: ref23
  doi: 10.1109/ICMEW.2016.7574708
– ident: ref11
  doi: 10.1109/ISCAS.2012.6271583
– start-page: 674
  year: 2012
  ident: ref19
  article-title: Image primitive coding and visual quality assessment
  publication-title: Proc Advances in Multimedia Information Processing
– ident: ref24
  doi: 10.1109/TIP.2011.2181525
– ident: ref58
  doi: 10.1137/140998135
– ident: ref68
  doi: 10.1109/VCIP.2013.6706334
– ident: ref49
  doi: 10.1109/ICASSP.2011.5946782
– ident: ref26
  doi: 10.1109/ICCV.2009.5459452
– ident: ref74
  doi: 10.1109/CVPR.2008.4587706
– ident: ref35
  doi: 10.1109/TSP.2010.2040671
– ident: ref5
  doi: 10.1109/JPROC.2010.2044470
– ident: ref17
  doi: 10.1109/ICASSP.2014.6853576
– ident: ref32
  doi: 10.1016/j.dsp.2006.02.002
– ident: ref65
  doi: 10.1109/ICCV.2013.34
– volume: 642
  year: 2012
  ident: ref2
  publication-title: JPEG2000 Image Compression Fun-damentals Standards and Practice Image Compression Fundamentals Standards and Practice
– ident: ref29
  doi: 10.1561/2200000016
– ident: ref66
  doi: 10.1109/DCC.2016.18
– ident: ref21
  doi: 10.1109/ICIP.2001.958518
– ident: ref12
  doi: 10.1109/TIP.2014.2323127
– year: 1974
  ident: ref51
  publication-title: A Mathematical Theory of Communication
– ident: ref67
  doi: 10.1109/TIP.2016.2629447
– ident: ref36
  doi: 10.1109/LSP.2013.2258912
– ident: ref20
  doi: 10.1109/ICIP.1998.723617
– ident: ref8
  doi: 10.1109/ISCAS.2015.7168816
– ident: ref71
  doi: 10.1109/ISCAS.2015.7168873
– volume: 39
  year: 2009
  ident: ref6
  publication-title: Natural Image Statistics A Probabilistic Approach to Early Computational Vision
– ident: ref13
  doi: 10.1016/j.sigpro.2013.09.025
– ident: ref25
  doi: 10.1109/TCSVT.2014.2317886
– ident: ref48
  doi: 10.1109/TIP.2016.2598483
– start-page: 592
  year: 2012
  ident: ref41
  article-title: Adaptive image compression using sparse dictionaries
  publication-title: Proc IEEE Int Conf Syst Signals Image Process (IWSSIP)
– ident: ref42
  doi: 10.1007/s11277-013-1577-y
– ident: ref40
  doi: 10.1016/j.sigpro.2016.05.036
– ident: ref43
  doi: 10.1016/j.jvcir.2008.03.001
– ident: ref50
  doi: 10.1109/ICASSP.2014.6853954
– ident: ref63
  doi: 10.1016/j.acha.2008.07.002
– ident: ref27
  doi: 10.1109/ICCV.2011.6126377
– ident: ref18
  doi: 10.1109/79.733497
– ident: ref76
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref44
  doi: 10.1109/TIP.2007.903259
– ident: ref53
  doi: 10.1109/TIP.2016.2623487
– ident: ref14
  doi: 10.1109/TCSVT.2014.2302380
– ident: ref72
  doi: 10.1109/PACRIM.2015.7334808
– year: 1997
  ident: ref77
  article-title: Very low bit-rate embedded video coding with 3D set partitioning in hierarchical trees (3D SPIHT)
– year: 2010
  ident: ref38
  publication-title: New Sparse Representation Methods Application to Image Compression and Indexing
– ident: ref55
  doi: 10.1007/s10915-010-9408-8
– ident: ref37
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref64
  doi: 10.1109/TIT.2009.2016006
– year: 0
  ident: ref60
  publication-title: Categorical Image Quality (CSIQ) Database
– ident: ref16
  doi: 10.1109/SMC.2015.276
– ident: ref7
  doi: 10.1109/VCIP.2013.6706358
– ident: ref39
  doi: 10.1109/TSP.2009.2036477
– ident: ref45
  doi: 10.1109/JSTSP.2011.2135332
– volume: 3
  start-page: iii-2177
  year: 2002
  ident: ref22
  article-title: A rate-distortion optimal coding alternative to matching pursuit
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref31
  doi: 10.1109/ICASSP.1999.760624
– ident: ref52
  doi: 10.1109/TIP.2013.2256917
– ident: ref33
  doi: 10.1109/TSP.2006.881199
– ident: ref69
  doi: 10.1109/ICME.2013.6607570
– ident: ref70
  doi: 10.1109/JETCAS.2014.2298291
– volume: 381
  start-page: 607
  year: 1996
  ident: ref3
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– ident: ref62
  doi: 10.1109/TIT.2007.909108
– year: 0
  ident: ref61
  publication-title: Kodak lossless true color image suite (PhotoCD PCD0992)
– ident: ref57
  doi: 10.1109/JSAC.2014.2328171
– ident: ref46
  doi: 10.1109/MMSP.2012.6343419
– ident: ref9
  doi: 10.1109/TCSVT.2015.2511838
– start-page: 93
  year: 2013
  ident: ref28
  article-title: Image super-resolution via hierarchical and collaborative sparse representation
  publication-title: Proc Data Compress Conf (DCC)
– ident: ref1
  doi: 10.1145/103085.103089
– ident: ref47
  doi: 10.1109/TIP.2013.2287996
– start-page: 380
  year: 2017
  ident: ref30
  article-title: Globally variance-constrained sparse representation for rate-distortion optimized image representation
  publication-title: Proc Data Compress Conf (DCC)
– year: 2014
  ident: ref56
  publication-title: An alternating direction method approach to cloud traffic management
– volume: 11
  start-page: 19
  year: 2010
  ident: ref34
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– start-page: 612
  year: 2011
  ident: ref59
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1109/TIP.2013.2266579
– ident: ref4
  doi: 10.1007/978-1-4419-7011-4
– ident: ref75
  doi: 10.1109/TIP.2015.2500034
SSID ssj0014516
Score 2.3350854
Snippet Sparse representation leads to an efficient way to approximately recover a signal by the linear composition of a few bases from a learnt dictionary based on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3753
SubjectTerms alternating direction method of multipliers
Channel coding
Dictionaries
Entropy
Image coding
Machine learning
Matching pursuit algorithms
Sparse representation
Title Globally Variance-Constrained Sparse Representation and Its Application in Image Set Coding
URI https://ieeexplore.ieee.org/document/8331891
https://www.ncbi.nlm.nih.gov/pubmed/29698207
https://www.proquest.com/docview/2032399989
Volume 27
WOSCitedRecordID wos000430967600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBR33VFxG8CKZdm-5mc5Si2IsUXxQ8LNk0gULdirsV_PfOZLerBxW87SHZR77JzjeZF8CpSJF26q7gqEw172rnuEY9y0PUDRHyfZdG2jebkLe38XCoBgtwXufCWGt98Jlt0aX35Y-mZkZHZe1YoARSqvqilFGZq1V7DKjhrPdshpJLpP1zl2Sg2g_9AcVwxS00L0RIVPebCvI9VX6nl17NXK__7wU3YK2ik-yyxH8TFmzWgPWKWrJq4-YNWP1Wd3ALnstK_5MP9oSmMuHOqXGnbxdB017R2rXszgfJVrlJGdPZiPWLnF1-ubzZOGP9F_wjsXtbsN6U9OA2PF5fPfRueNVlgRvcfgUXYWqEEVoZkWrkHxd6ZKNApJFNA2dTJ0NtZGCkMR1tYqcD5yLnkJjrIB4hPRA7sJRNM7sHzIZKOytRLtDOUd0Al6Ibh2lHiIjyd0UT2vOFT0xVgpw-bZJ4UyRQCUKVEFRJBVUTzuoZr2X5jT_GbhEi9bgKjCaczLFNcOuQP0RndjrLE2oej_xMxaoJuyXo9eSOihSSI7n_800PYIUeXUYCHsJS8TazR7Bs3otx_naM8jmMj718fgKBkeDt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXg-nZ9RvAiGLduto8cRRQXdRFdRfBQ0mwCgnZltyv4751Js9WDCt56SErab9L5pjOTD2BfZEg7VUtwdKaKt5S1XKGf5SH6hgj5vs0i5cQm4k4neXyUNxNwWPXCGGNc8Zk5okuXy-_19Yh-lTUSgRZIrepTpJzlu7WqnAFJzrrcZhjzGIn_OCkZyEa3fUNVXMkRBhgiJLL7zQk5VZXfCaZzNOe1_y1xAeY9oWQnpQUswoTJl6DmySXzW3e4BHPfTh5chqfyrP-XD_aAwTIhz0m60wlG0LQ3jHcNu3Vlsr47KWcq77F2MWQnX0lv9pyz9it-k9idKdhpnzzhCtyfn3VPL7jXWeAaN2DBRZhpoYWSWmQKGcix6pkoEFlkssCazMah0nGgY62bSidWBdZG1iI1V0HSQ4IgVmEy7-dmHZgJpbImRsvASEe2AnwVrSTMmkJE1MEr6tAYv_hU-0PI6dFeUheMBDJFqFKCKvVQ1eGgmvFWHsDxx9hlQqQa58Gow94Y2xQ3D2VEVG76o2FK8vHI0GQi67BWgl5NbspIIj2KN36-6S7MXHSvr9KrdudyE2ZpGWVd4BZMFoOR2YZp_V48Dwc7zko_ARDC404
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Globally+Variance-Constrained+Sparse+Representation+and+Its+Application+in+Image+Set+Coding&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhang%2C+Xiang&rft.au=Sun%2C+Jiarui&rft.au=Ma%2C+Siwei&rft.au=Lin%2C+Zhouchen&rft.date=2018-08-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=27&rft.issue=8&rft.spage=3753&rft.epage=3765&rft_id=info:doi/10.1109%2FTIP.2018.2823546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2018_2823546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon