Applications of accelerated computational methods for quasi-nonexpansive operators to optimization problems

This paper studies the convergence rates of two accelerated computational methods without assuming nonexpansivity of the underlying operators with convex and affine domains in infinite-dimensional Hilbert spaces. One method is a noninertial method, and its convergence rate is estimated as R T , { x...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 24; číslo 23; s. 17887 - 17911
Hlavní autor: Sahu, D. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the convergence rates of two accelerated computational methods without assuming nonexpansivity of the underlying operators with convex and affine domains in infinite-dimensional Hilbert spaces. One method is a noninertial method, and its convergence rate is estimated as R T , { x n } ( n ) = o 1 n in worst case. The other is an inertial method, and its convergence rate is estimated as R T , { y n } ( n ) = o 1 n under practical conditions. Then, we apply our results to give new results on convergence rates for solving generalized split common fixed-point problems for the class of demimetric operators. We also apply our results to variational inclusion problems and convex optimization problems. Our results significantly improve and/or develop previously discussed fixed-point problems and splitting problems and related algorithms. To demonstrate the applicability of our methods, we provide numerical examples for comparisons and numerical experiments on regression problems for publicly available high-dimensional real datasets taken from different application domains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-020-05038-9