New Constraint Qualifications for Mathematical Programs with Second-Order Cone Complementarity Constraints

In this paper, we propose several new constraint qualifications for mathematical programs with second-order cone complementarity constraints (SOCMPCC), named SOCMPCC-K-, strongly (S-), and Mordukhovich (M-) relaxed constant positive linear dependence condition (K-/S-/M-RCPLD). We show that K-/S-/M-R...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 199; číslo 3; s. 1249 - 1280
Hlavní autoři: Liang, Yan-Chao, Liu, Yue-Wen, Lin, Gui-Hua, Zhu, Xide
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2023
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose several new constraint qualifications for mathematical programs with second-order cone complementarity constraints (SOCMPCC), named SOCMPCC-K-, strongly (S-), and Mordukhovich (M-) relaxed constant positive linear dependence condition (K-/S-/M-RCPLD). We show that K-/S-/M-RCPLD can ensure that a local minimizer of SOCMPCC is a K-/S-/M-stationary point, respectively. We further give some other constant rank-type constraint qualifications for SOCMPCC. These new constraint qualifications are strictly weaker than SOCMPCC linear independent constraint qualification and nondegenerate condition. Finally, we demonstrate the relationships among the existing SOCMPCC constraint qualifications.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-023-02299-w