Forward–Reflected–Backward Splitting Algorithms with Momentum: Weak, Linear and Strong Convergence Results
This paper studies the forward–reflected–backward splitting algorithm with momentum terms for monotone inclusion problem of the sum of a maximal monotone and Lipschitz continuous monotone operators in Hilbert spaces. The forward–reflected–backward splitting algorithm is an interesting algorithm for...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 201; číslo 3; s. 1364 - 1397 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper studies the forward–reflected–backward splitting algorithm with momentum terms for monotone inclusion problem of the sum of a maximal monotone and Lipschitz continuous monotone operators in Hilbert spaces. The forward–reflected–backward splitting algorithm is an interesting algorithm for inclusion problems with the sum of maximal monotone and Lipschitz continuous monotone operators due to the inherent feature of one forward evaluation and one backward evaluation per iteration it possesses. The results in this paper further explore the convergence behavior of the forward–reflected–backward splitting algorithm with momentum terms. We obtain weak, linear, and strong convergence results under the same inherent feature of one forward evaluation and one backward evaluation at each iteration. Numerical results show that forward–reflected–backward splitting algorithms with momentum terms are efficient and promising over some related splitting algorithms in the literature. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-024-02410-9 |