Forward–Reflected–Backward Splitting Algorithms with Momentum: Weak, Linear and Strong Convergence Results

This paper studies the forward–reflected–backward splitting algorithm with momentum terms for monotone inclusion problem of the sum of a maximal monotone and Lipschitz continuous monotone operators in Hilbert spaces. The forward–reflected–backward splitting algorithm is an interesting algorithm for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 201; H. 3; S. 1364 - 1397
Hauptverfasser: Yao, Yonghong, Adamu, Abubakar, Shehu, Yekini
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2024
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the forward–reflected–backward splitting algorithm with momentum terms for monotone inclusion problem of the sum of a maximal monotone and Lipschitz continuous monotone operators in Hilbert spaces. The forward–reflected–backward splitting algorithm is an interesting algorithm for inclusion problems with the sum of maximal monotone and Lipschitz continuous monotone operators due to the inherent feature of one forward evaluation and one backward evaluation per iteration it possesses. The results in this paper further explore the convergence behavior of the forward–reflected–backward splitting algorithm with momentum terms. We obtain weak, linear, and strong convergence results under the same inherent feature of one forward evaluation and one backward evaluation at each iteration. Numerical results show that forward–reflected–backward splitting algorithms with momentum terms are efficient and promising over some related splitting algorithms in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-024-02410-9