On the Moisil-Theodoresco Operator in Orthogonal Curvilinear Coordinates
The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light...
Gespeichert in:
| Veröffentlicht in: | Computational methods and function theory Jg. 21; H. 1; S. 131 - 144 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1617-9447, 2195-3724 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on
R
3
(sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light on the technical aspect of the subject. Moreover, we introduce a notion of quaternionic Laplace operator acting on a quaternionic valued function from which one can recover both scalar and vector Laplacians in the vector analysis context. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-020-00319-8 |