On the Moisil-Theodoresco Operator in Orthogonal Curvilinear Coordinates

The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational methods and function theory Ročník 21; číslo 1; s. 131 - 144
Hlavní autoři: Bory Reyes, J., Pérez-de la Rosa, M. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Témata:
ISSN:1617-9447, 2195-3724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The action of the Moisil-Theodoresco operator over a quaternionic valued function defined on R 3 (sum of a scalar and a vector field) in Cartesian coordinates is generally well understood. However this is not the case for any orthogonal curvilinear coordinate system. This paper sheds some new light on the technical aspect of the subject. Moreover, we introduce a notion of quaternionic Laplace operator acting on a quaternionic valued function from which one can recover both scalar and vector Laplacians in the vector analysis context.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-020-00319-8