Lipschitz-like property relative to a set and the generalized Mordukhovich criterion

In this paper we will establish some necessary condition and sufficient condition respectively for a set-valued mapping to have the Lipschitz-like property relative to a closed set by employing regular normal cone and limiting normal cone of a restricted graph of the set-valued mapping. We will obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 189; H. 1-2; S. 455 - 489
Hauptverfasser: Meng, K. W., Li, M. H., Yao, W. F., Yang, X. Q.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we will establish some necessary condition and sufficient condition respectively for a set-valued mapping to have the Lipschitz-like property relative to a closed set by employing regular normal cone and limiting normal cone of a restricted graph of the set-valued mapping. We will obtain a complete characterization for a set-valued mapping to have the Lipschitz-property relative to a closed and convex set by virtue of the projection of the coderivative onto a tangent cone. Furthermore, by introducing a projectional coderivative of set-valued mappings, we establish a verifiable generalized Mordukhovich criterion for the Lipschitz-like property relative to a closed and convex set. We will study the representation of the graphical modulus of a set-valued mapping relative to a closed and convex set by using the outer norm of the corresponding projectional coderivative value. For an extended real-valued function, we will apply the obtained results to investigate its Lipschitz continuity relative to a closed and convex set and the Lipschitz-like property of a level-set mapping relative to a half line.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-020-01568-0