Lipschitz-like property relative to a set and the generalized Mordukhovich criterion
In this paper we will establish some necessary condition and sufficient condition respectively for a set-valued mapping to have the Lipschitz-like property relative to a closed set by employing regular normal cone and limiting normal cone of a restricted graph of the set-valued mapping. We will obta...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 189; číslo 1-2; s. 455 - 489 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we will establish some necessary condition and sufficient condition respectively for a set-valued mapping to have the Lipschitz-like property relative to a closed set by employing regular normal cone and limiting normal cone of a restricted graph of the set-valued mapping. We will obtain a complete characterization for a set-valued mapping to have the Lipschitz-property relative to a closed and convex set by virtue of the projection of the coderivative onto a tangent cone. Furthermore, by introducing a projectional coderivative of set-valued mappings, we establish a verifiable generalized Mordukhovich criterion for the Lipschitz-like property relative to a closed and convex set. We will study the representation of the graphical modulus of a set-valued mapping relative to a closed and convex set by using the outer norm of the corresponding projectional coderivative value. For an extended real-valued function, we will apply the obtained results to investigate its Lipschitz continuity relative to a closed and convex set and the Lipschitz-like property of a level-set mapping relative to a half line. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-020-01568-0 |