Numerical simulations of ultrathin CdTe solar cells with a ZnxCd1−xS window layer and a Cu2O hole transport layer
CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO 2 /CdS/CdTe structure is simulated using input experimental data to verify the simulation process. To make the cell more economical, the thickness of the Cd...
Uloženo v:
| Vydáno v: | Journal of computational electronics Ročník 20; číslo 6; s. 2501 - 2510 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1569-8025, 1572-8137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO
2
/CdS/CdTe structure is simulated using input experimental data to verify the simulation process. To make the cell more economical, the thickness of the CdTe layer is decreased, resulting in a degradation of the device performance. To decrease the minority-carrier recombination loss of the designed structure, a
p
-type Cu
2
O layer is exploited at the back contact as a hole transport electron blocking layer (HT–EBL). To address the performance degradation, a ZnS/CdS bilayer is used as the window layer. The interdiffusion of Cd into the ZnS due to annealing treatment and the formation of Zn
x
Cd
1−
x
S compound are also studied. Cell parameters include the thickness, doping concentration, and carrier lifetime are then optimized to enhance the power conversion efficiency (PCE). The proposed FTO/i-SnO
2
/Zn
0.5
Cd
0.5
S/CdTe/Cu
2
O configuration shows the best PCE of 17.5%, short-circuit current density (
J
sc
) of 27.8 mA/cm
2
, open-circuit voltage (
V
oc
) of 0.87 V, and fill factor of 72.34% under AM1.5G illumination. |
|---|---|
| AbstractList | CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO2/CdS/CdTe structure is simulated using input experimental data to verify the simulation process. To make the cell more economical, the thickness of the CdTe layer is decreased, resulting in a degradation of the device performance. To decrease the minority-carrier recombination loss of the designed structure, a p-type Cu2O layer is exploited at the back contact as a hole transport electron blocking layer (HT–EBL). To address the performance degradation, a ZnS/CdS bilayer is used as the window layer. The interdiffusion of Cd into the ZnS due to annealing treatment and the formation of ZnxCd1−xS compound are also studied. Cell parameters include the thickness, doping concentration, and carrier lifetime are then optimized to enhance the power conversion efficiency (PCE). The proposed FTO/i-SnO2/Zn0.5Cd0.5S/CdTe/Cu2O configuration shows the best PCE of 17.5%, short-circuit current density (Jsc) of 27.8 mA/cm2, open-circuit voltage (Voc) of 0.87 V, and fill factor of 72.34% under AM1.5G illumination. CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO 2 /CdS/CdTe structure is simulated using input experimental data to verify the simulation process. To make the cell more economical, the thickness of the CdTe layer is decreased, resulting in a degradation of the device performance. To decrease the minority-carrier recombination loss of the designed structure, a p -type Cu 2 O layer is exploited at the back contact as a hole transport electron blocking layer (HT–EBL). To address the performance degradation, a ZnS/CdS bilayer is used as the window layer. The interdiffusion of Cd into the ZnS due to annealing treatment and the formation of Zn x Cd 1− x S compound are also studied. Cell parameters include the thickness, doping concentration, and carrier lifetime are then optimized to enhance the power conversion efficiency (PCE). The proposed FTO/i-SnO 2 /Zn 0.5 Cd 0.5 S/CdTe/Cu 2 O configuration shows the best PCE of 17.5%, short-circuit current density ( J sc ) of 27.8 mA/cm 2 , open-circuit voltage ( V oc ) of 0.87 V, and fill factor of 72.34% under AM1.5G illumination. |
| Author | Hassnzadeh, Javad Amoupour, Ebrahim Abdolahzadeh Ziabari, Ali Azimi Anaraki, P. |
| Author_xml | – sequence: 1 givenname: Ebrahim surname: Amoupour fullname: Amoupour, Ebrahim organization: Department of Physics, Faculty of Science, Takestan Branch, Islamic Azad University – sequence: 2 givenname: Javad surname: Hassnzadeh fullname: Hassnzadeh, Javad email: javadhasanzadeh649@gmail.com organization: Department of Physics, Faculty of Science, Takestan Branch, Islamic Azad University – sequence: 3 givenname: Ali surname: Abdolahzadeh Ziabari fullname: Abdolahzadeh Ziabari, Ali organization: Nano Research Lab, Lahijan Branch, Islamic Azad University – sequence: 4 givenname: P. surname: Azimi Anaraki fullname: Azimi Anaraki, P. organization: Department of Physics, Faculty of Science, Takestan Branch, Islamic Azad University |
| BookMark | eNp9kEtOwzAQhi1UJJ4XYGWJdcDjvJco4iVVdEHZsLGcZEyDXLvYiUpvwJojchJcgoTEoitbnv-bGX9HZGKsQULOgF0AY_mlB1bwNGIcIgZ5XkbJHjmENOdRAXE-2d6zMioYTw_IkfevjHHGEzgk_mFYousaqanvloOWfWeNp1bRQfdO9ovO0KqdI_VWS0cb1NrTddcvqKTP5r1q4evj8_0xPJnWrqmWG3RUmjaUq4HP6MJqpKGR8Svr-rF-QvaV1B5Pf89j8nRzPa_uouns9r66mkZNDGUfQY0xVwkqYFzVyOsia5WUiHXWYsuBqyZJVZyEDxcckjpNMWPYxHkbZ4rJMj4m52PflbNvA_pevNrBmTBS8BIKnueQJCFVjKnGWe8dKtF0_Y-GsHanBTCxVSxGxSIoFj-KxRbl_9CV65bSbXZD8Qj5EDYv6P622kF9A1vckow |
| CitedBy_id | crossref_primary_10_1016_j_matlet_2022_132931 crossref_primary_10_1038_s41598_025_12006_6 crossref_primary_10_1007_s11468_023_02031_4 crossref_primary_10_1016_j_arabjc_2022_103894 crossref_primary_10_1007_s12648_024_03500_0 crossref_primary_10_1557_s43580_025_01364_y crossref_primary_10_1007_s12648_023_02801_0 crossref_primary_10_1016_j_matlet_2023_134809 crossref_primary_10_1088_1402_4896_adeaff crossref_primary_10_3390_en16197001 |
| Cites_doi | 10.1002/pip.3102 10.1016/j.jallcom.2020.155741 10.1002/pip.527 10.1021/acsaem.0c00937 10.1016/j.solener.2019.01.019 10.1016/j.solener.2004.06.006 10.1016/j.solmat.2010.12.042 10.1016/j.solener.2020.12.070 10.1063/1.4865957 10.1002/pip.2782 10.1016/j.tsf.2019.03.003 10.1016/j.solmat.2016.09.025 10.1016/j.jpcs.2013.08.004 10.1016/j.tsf.2010.12.234 10.1063/1.328243 10.1109/JPHOTOV.2016.2617041 10.1016/j.solener.2018.04.013 10.1016/S0040-6090(99)00825-1 10.1016/j.optmat.2018.09.045 10.1088/2053-1591/ab22aa 10.1016/j.solmat.2018.03.010 10.1016/j.optmat.2019.04.029 10.1088/0268-1242/6/7/023 10.1007/s11664-020-08696-5 10.1016/j.solmat.2008.11.047 10.3390/molecules26113275 10.1016/j.optmat.2020.109970 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s10825-021-01779-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8137 |
| EndPage | 2510 |
| ExternalDocumentID | 10_1007_s10825_021_01779_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9P PF0 PT4 PTHSS QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-1be32f4ef102fbe2b86dfaaeeb6ded212fc45f340178214b55e60ec37d36f0a93 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696762200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1569-8025 |
| IngestDate | Thu Nov 06 12:21:18 EST 2025 Tue Nov 18 21:18:17 EST 2025 Sat Nov 29 06:04:24 EST 2025 Fri Feb 21 02:47:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Solar cells Window layer Simulation Ultrathin CdTe Photovoltaics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-1be32f4ef102fbe2b86dfaaeeb6ded212fc45f340178214b55e60ec37d36f0a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918277144 |
| PQPubID | 2043855 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2918277144 crossref_citationtrail_10_1007_s10825_021_01779_4 crossref_primary_10_1007_s10825_021_01779_4 springer_journals_10_1007_s10825_021_01779_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20211200 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of computational electronics |
| PublicationTitleAbbrev | J Comput Electron |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hossain, Amin, Razykov (CR33) 2011; 8 Aranovich, Golmayo, Fahrenbruch, Bube (CR22) 2012; 51 Hossain, Rahman, Karim, Aijaz, Dar, Shar, Misran, Amin (CR32) 2019; 180 Sawicka-Chudy, Starowicz, Wisz, Yavorskyi, Zapukhlyak, Bester, Głowa, Sibiński, Cholewa (CR28) 2019; 6 Kc, Shah, Shaheer Akhtar, Park, Kim, Yang, Pant (CR7) 2021; 26 Wu (CR3) 2004; 77 Türck, Nonnenmacher, Connor, Siol, Siepchen, Heimfarth, Klein, Jaegermann (CR8) 2016; 24 Hernández-Calderón, Vigil-Galán, Pulgarín-Agudelo, Courel, Arce-Plaza, Cruz-Gandarilla, Sánchez-Rodríguez, Roque-De la Puent (CR12) 2019; 676 Burgelman, Nollet, Degrave (CR15) 2000; 361 Fardi, Buny (CR19) 2013; 6 Tinedert, Saadoune, Bouchama, Saeed (CR9) 2020; 106 Wang, Miska, Pilloud, Horwat, Mücklich, Pierson (CR10) 2014; 115 Romeo, Terheggen, Abou-Ras, Bätzner, Haug, Kälin, Rudmann, Tiwari (CR4) 2004; 12 Han, Fu, Krishnakumar, Liao, Jaegermann (CR25) 2013; 74 Keshav, Mahesha (CR14) 2018; 167 Hernández-Calderón, Vigil-Galán, Guc, Carrillo Osuna, Ramirez Velasco, Sánchez-Rodríguez, Vidal-Fuentes, Giraldo, Saucedo, Sánchez (CR13) 2020; 3 Matin, Amin, Zaharim, Sopian (CR20) 2010; 6 Burst, Duenov, Albin, Colegrove, Reese, Aguiar, Jiang, Patel, Al-Jassim, Kuciauskas, Swain, Ablekim, Lynn, Metzger (CR17) 2016; 1 Shah, Kc, Muddassir, Shaheer Akhtar, Kim, Yang (CR6) 2021; 216 Skhouni, El Manouni, Mari, Ullah (CR24) 2016; 24602 Islam, Ishizuka, Yamada, Sakurai, Niki, Sakurai, Akimoto (CR29) 2009; 93 Tingliang, Xulin, Jingquan, Lianghuan (CR21) 2012; 33 Baines, Zoppi, Bowen, Shalvey, Mariotti, Durose, Major (CR16) 2018; 180 Abdolahzadeh Ziabari, Mohabbati Zindanlou, Hassanzadeh, Golshahi, Bagheri Khatibani (CR18) 2020; 842 Perrenoud, Kranz, Buecheler, Pianezzi, Tiwari (CR23) 2011; 519 Hossain, Rahman, Islam, Akhtaruzzaman, Misran, Alghoul, Amin (CR30) 2018; 86 Green, Hishikawa, Dunlop, Levi, Hohl-Ebinger, Yoshita, HoBaillie (CR2) 2019; 27 Nykyruy, Yavorskyi, Zapukhlyak, Wisz, Potera (CR27) 2019; 92 Garris, Mansfield, Egaas, Ramanathan (CR26) 2017; 7 Swanson, Sites, Sampath (CR1) 2017; 159 Kc, Shah, Alanzi, Shaheer Akhtar (CR5) 2020; 50 Hussain, Reddy, Naidu, Uthanna, Reddy (CR31) 1991; 6 Lauermann, Bär, Fischer (CR11) 2011; 95 I Lauermann (1779_CR11) 2011; 95 OM Hussain (1779_CR31) 1991; 6 J Han (1779_CR25) 2013; 74 M Burgelman (1779_CR15) 2000; 361 R Keshav (1779_CR14) 2018; 167 X Wu (1779_CR3) 2004; 77 D Kc (1779_CR7) 2021; 26 J Türck (1779_CR8) 2016; 24 J Perrenoud (1779_CR23) 2011; 519 MS Hossain (1779_CR32) 2019; 180 MA Matin (1779_CR20) 2010; 6 DK Shah (1779_CR6) 2021; 216 JA Aranovich (1779_CR22) 2012; 51 H Fardi (1779_CR19) 2013; 6 DE Swanson (1779_CR1) 2017; 159 LI Nykyruy (1779_CR27) 2019; 92 MS Hossain (1779_CR30) 2018; 86 T Baines (1779_CR16) 2018; 180 MA Green (1779_CR2) 2019; 27 RL Garris (1779_CR26) 2017; 7 P Sawicka-Chudy (1779_CR28) 2019; 6 V Hernández-Calderón (1779_CR13) 2020; 3 A Romeo (1779_CR4) 2004; 12 Y Wang (1779_CR10) 2014; 115 MS Hossain (1779_CR33) 2011; 8 V Hernández-Calderón (1779_CR12) 2019; 676 MM Islam (1779_CR29) 2009; 93 O Skhouni (1779_CR24) 2016; 24602 A Abdolahzadeh Ziabari (1779_CR18) 2020; 842 JM Burst (1779_CR17) 2016; 1 D Kc (1779_CR5) 2020; 50 L Tingliang (1779_CR21) 2012; 33 IE Tinedert (1779_CR9) 2020; 106 |
| References_xml | – volume: 27 start-page: 3 year: 2019 end-page: 12 ident: CR2 article-title: Solar cell efficiency tables (ver, 53) publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.3102 – volume: 842 start-page: 155741 year: 2020 ident: CR18 article-title: Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: Influence of stabilizer and thickness publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.155741 – volume: 12 start-page: 93 year: 2004 end-page: 111 ident: CR4 article-title: Development of thin-film Cu(In, Ga)S 2 and CdTe solar cells publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.527 – volume: 3 start-page: 6815 issue: 7 year: 2020 end-page: 6823 ident: CR13 article-title: CdS/ZnS bilayer thin films used as buffer layer in 10%-efficient Cu ZnSnSe solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00937 – volume: 180 start-page: 559 year: 2019 end-page: 566 ident: CR32 article-title: Impact of CdTe thin film thickness in Zn Cd S/CdTe solar cell by RF sputtering publication-title: Sol. Energy doi: 10.1016/j.solener.2019.01.019 – volume: 77 start-page: 803 year: 2004 end-page: 814 ident: CR3 article-title: High-efficiency polycrystalline CdTe thin-film solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2004.06.006 – volume: 95 start-page: 1495 year: 2011 end-page: 1508 ident: CR11 article-title: Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite thin-film solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.12.042 – volume: 216 start-page: 259 year: 2021 end-page: 265 ident: CR6 article-title: A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps publication-title: Sol. Energy doi: 10.1016/j.solener.2020.12.070 – volume: 115 start-page: 73505 year: 2014 ident: CR10 article-title: Transmittance enhancement and optical band gap widening of Cu O thin films after air annealing publication-title: J. Appl. Phys. doi: 10.1063/1.4865957 – volume: 33 start-page: 6 issue: 9 year: 2012 ident: CR21 article-title: Effect of ZnO films on CdTe solar cells publication-title: J. Semicond. – volume: 24 start-page: 1229 year: 2016 end-page: 1236 ident: CR8 article-title: Copper (I) Oxide (Cu O) based back contact for p–i–n CdTe solar cells publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2782 – volume: 676 start-page: 100 year: 2019 end-page: 107 ident: CR12 article-title: Optimization of Cd Zn S compound from CdS/ZnS bi-layers deposited by chemical bath deposition for thin film solar cells application publication-title: Thin Solid Films doi: 10.1016/j.tsf.2019.03.003 – volume: 159 start-page: 389 year: 2017 end-page: 394 ident: CR1 article-title: Co-sublimation of CdSe Te layers for CdTe solar cells publication-title: Sol. Energ. Mater. Sol. C. doi: 10.1016/j.solmat.2016.09.025 – volume: 74 start-page: 1879 issue: 12 year: 2013 end-page: 1883 ident: CR25 article-title: Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2013.08.004 – volume: 6 start-page: 571 issue: 8 year: 2010 end-page: 580 ident: CR20 article-title: A study towards the possibility of ultra thin CdS/CdTe high efficiency solar cells from numerical analysis publication-title: Wseas Trans. Environ. Dev – volume: 1 start-page: 1 year: 2016 end-page: 7 ident: CR17 article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier publication-title: Nat. Energy – volume: 519 start-page: 7444 issue: 21 year: 2011 end-page: 7448 ident: CR23 article-title: The use of aluminum doped ZnO as transparent conductive oxidefor CdS/CdTe solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.12.234 – volume: 6 start-page: 2013 year: 2013 ident: CR19 article-title: Characterization and modeling of CdS/CdTe heterojunction thin-film solar cell for high efficiency performance publication-title: Int. J. Photoenergy – volume: 24602 start-page: 1 issue: 74 year: 2016 end-page: 6 ident: CR24 article-title: Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance publication-title: Eur. Phys. J. Appl. Phys. – volume: 51 start-page: 4260 issue: 8 year: 2012 end-page: 4268 ident: CR22 article-title: Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis publication-title: J. Appl. Phys. doi: 10.1063/1.328243 – volume: 7 start-page: 281 year: 2017 end-page: 285 ident: CR26 article-title: Low-Cd CIGS solar cells made with a hybrid CdS/Zn(OS) buffer layer publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2016.2617041 – volume: 8 start-page: 187 issue: 3 year: 2011 end-page: 197 ident: CR33 article-title: Prospects of back contacts with back surface fields in high efficiency Zn Cd S/CdTe solar cells from numerical modelling publication-title: Chalcogenide Lett. – volume: 167 start-page: 172 year: 2018 end-page: 178 ident: CR14 article-title: Optical and electrical characterization of vacuum deposited n–CdS/n–ZnS bilayers publication-title: Sol. Energy doi: 10.1016/j.solener.2018.04.013 – volume: 361 start-page: 527 year: 2000 end-page: 532 ident: CR15 article-title: Modeling polycrystalline semiconductor solar cells publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 86 start-page: 270 year: 2018 end-page: 277 ident: CR30 article-title: Growth optimization of Zn Cd S films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells publication-title: Opt. Mater. doi: 10.1016/j.optmat.2018.09.045 – volume: 6 start-page: 085918 year: 2019 ident: CR28 article-title: Simulation of TiO /CuO solar cells with SCAPS-1D software publication-title: Mater. Res. Exp. doi: 10.1088/2053-1591/ab22aa – volume: 180 start-page: 196 year: 2018 end-page: 204 ident: CR16 article-title: Incorporation of CdSe layers into CdTe thin film solar cells publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2018.03.010 – volume: 92 start-page: 319 year: 2019 end-page: 329 ident: CR27 article-title: Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties publication-title: Opt. Mater. doi: 10.1016/j.optmat.2019.04.029 – volume: 6 start-page: 690 year: 1991 ident: CR31 article-title: Characterization of thin film ZnCdS/CdTe solar cells publication-title: Sem. Sci. Tech. doi: 10.1088/0268-1242/6/7/023 – volume: 50 start-page: 2199 year: 2020 end-page: 2205 ident: CR5 article-title: Impact of different antireflection layers on cadmium telluride (CdTe) solar cells: a PC1D simulation study publication-title: J. Elec. Mater. doi: 10.1007/s11664-020-08696-5 – volume: 93 start-page: 970 year: 2009 end-page: 972 ident: CR29 article-title: CIGS solar cell with MBE-grown ZnS buffer layer publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.11.047 – volume: 26 start-page: 3275 issue: 11 year: 2021 ident: CR7 article-title: Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell publication-title: Molecules doi: 10.3390/molecules26113275 – volume: 106 start-page: 109970 year: 2020 ident: CR9 article-title: Numerical modelling and optimization of CdS/CdTe solar cell with incorporation of Cu O HT–EBL layer publication-title: Optical Materials doi: 10.1016/j.optmat.2020.109970 – volume: 93 start-page: 970 year: 2009 ident: 1779_CR29 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.11.047 – volume: 3 start-page: 6815 issue: 7 year: 2020 ident: 1779_CR13 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00937 – volume: 6 start-page: 2013 year: 2013 ident: 1779_CR19 publication-title: Int. J. Photoenergy – volume: 216 start-page: 259 year: 2021 ident: 1779_CR6 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.12.070 – volume: 361 start-page: 527 year: 2000 ident: 1779_CR15 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00825-1 – volume: 26 start-page: 3275 issue: 11 year: 2021 ident: 1779_CR7 publication-title: Molecules doi: 10.3390/molecules26113275 – volume: 51 start-page: 4260 issue: 8 year: 2012 ident: 1779_CR22 publication-title: J. Appl. Phys. doi: 10.1063/1.328243 – volume: 6 start-page: 571 issue: 8 year: 2010 ident: 1779_CR20 publication-title: Wseas Trans. Environ. Dev – volume: 842 start-page: 155741 year: 2020 ident: 1779_CR18 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.155741 – volume: 106 start-page: 109970 year: 2020 ident: 1779_CR9 publication-title: Optical Materials doi: 10.1016/j.optmat.2020.109970 – volume: 180 start-page: 196 year: 2018 ident: 1779_CR16 publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2018.03.010 – volume: 95 start-page: 1495 year: 2011 ident: 1779_CR11 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.12.042 – volume: 519 start-page: 7444 issue: 21 year: 2011 ident: 1779_CR23 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.12.234 – volume: 24 start-page: 1229 year: 2016 ident: 1779_CR8 publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2782 – volume: 24602 start-page: 1 issue: 74 year: 2016 ident: 1779_CR24 publication-title: Eur. Phys. J. Appl. Phys. – volume: 159 start-page: 389 year: 2017 ident: 1779_CR1 publication-title: Sol. Energ. Mater. Sol. C. doi: 10.1016/j.solmat.2016.09.025 – volume: 167 start-page: 172 year: 2018 ident: 1779_CR14 publication-title: Sol. Energy doi: 10.1016/j.solener.2018.04.013 – volume: 180 start-page: 559 year: 2019 ident: 1779_CR32 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.01.019 – volume: 7 start-page: 281 year: 2017 ident: 1779_CR26 publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2016.2617041 – volume: 77 start-page: 803 year: 2004 ident: 1779_CR3 publication-title: Sol. Energy doi: 10.1016/j.solener.2004.06.006 – volume: 27 start-page: 3 year: 2019 ident: 1779_CR2 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.3102 – volume: 1 start-page: 1 year: 2016 ident: 1779_CR17 publication-title: Nat. Energy – volume: 8 start-page: 187 issue: 3 year: 2011 ident: 1779_CR33 publication-title: Chalcogenide Lett. – volume: 12 start-page: 93 year: 2004 ident: 1779_CR4 publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.527 – volume: 115 start-page: 73505 year: 2014 ident: 1779_CR10 publication-title: J. Appl. Phys. doi: 10.1063/1.4865957 – volume: 33 start-page: 6 issue: 9 year: 2012 ident: 1779_CR21 publication-title: J. Semicond. – volume: 74 start-page: 1879 issue: 12 year: 2013 ident: 1779_CR25 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2013.08.004 – volume: 6 start-page: 690 year: 1991 ident: 1779_CR31 publication-title: Sem. Sci. Tech. doi: 10.1088/0268-1242/6/7/023 – volume: 50 start-page: 2199 year: 2020 ident: 1779_CR5 publication-title: J. Elec. Mater. doi: 10.1007/s11664-020-08696-5 – volume: 86 start-page: 270 year: 2018 ident: 1779_CR30 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2018.09.045 – volume: 6 start-page: 085918 year: 2019 ident: 1779_CR28 publication-title: Mater. Res. Exp. doi: 10.1088/2053-1591/ab22aa – volume: 676 start-page: 100 year: 2019 ident: 1779_CR12 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2019.03.003 – volume: 92 start-page: 319 year: 2019 ident: 1779_CR27 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2019.04.029 |
| SSID | ssj0020241 |
| Score | 2.2978408 |
| Snippet | CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO
2
/CdS/CdTe... CdTe solar cells are investigated using a solar cell capacitance simulator software. First, a conventional fluorine-doped tin oxide (FTO)/i-SnO2/CdS/CdTe... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2501 |
| SubjectTerms | Cadmium sulfide Cadmium telluride Cadmium tellurides Carrier density Carrier lifetime Carrier recombination Copper oxides Efficiency Electrical Engineering Energy conversion efficiency Engineering Fluorine Interdiffusion Interfaces Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering Open circuit voltage Optical and Electronic Materials Performance degradation Photovoltaic cells Short circuit currents Simulation Solar cells Theoretical Thickness Tin dioxide Tin oxides Zinc sulfide |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbRGoS5zWiiIqpIFpQxRLZ8UVUKimqE-hPYOYn8ks450ELAiRYfY4Vnc--7-zzd4Qce7Ev4gDQeIULBgPWNgJpM8P1NBu6pqwTvCg24XW7_mAQXFWPwlSd7V5fSRY79dxjN4xmDJ1SgFbkBQZbJEvo7nxdsOG6d_sRZqHXKVlS3QD3X8upnsp8P8ZndzTDmF-uRQtv01n_339ukLUKXdKz0hw2yQKkW2R1jnNwm6huXl7SjKgaPlTFuxQdJzQfaaba-2FKQ9kHqnTQS_XBvqL6tJZyepdOQ2m-vbxOe9iUyvEzHXHE7JSnEsVhbl1SXW-XZjVleinfITed8354YVSVF4wYl2RmmAJsK2GQIPxIBFjCd2XCOYBwJUj0dknMnMTG2AwBhsmE44Dbhtj2pO0mbR7Yu6SRjlPYIxQ8lDHucGGbzAHJJbZIy0eoF2ss1SRmPQFRXNGS6-oYo2hGqKwVGqFCo0KhEWuSk49vHktSjl97t-p5jaoFqiIrwMDK8zCcbJLTeh5n4p9H2_9b9wOyYmlTKBJgWqSRTXI4JMvxUzZUk6PCcN8BcBnn2w priority: 102 providerName: Springer Nature |
| Title | Numerical simulations of ultrathin CdTe solar cells with a ZnxCd1−xS window layer and a Cu2O hole transport layer |
| URI | https://link.springer.com/article/10.1007/s10825-021-01779-4 https://www.proquest.com/docview/2918277144 |
| Volume | 20 |
| WOSCitedRecordID | wos000696762200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0020241 issn: 1569-8025 databaseCode: P5Z dateStart: 20020701 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0020241 issn: 1569-8025 databaseCode: K7- dateStart: 20020701 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0020241 issn: 1569-8025 databaseCode: M7S dateStart: 20020701 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-8137 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0020241 issn: 1569-8025 databaseCode: BENPR dateStart: 20020701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020241 issn: 1569-8025 databaseCode: RSV dateStart: 20020701 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB71h0N7gAJFBEq0B26wIrbX3viEIGpVqVKImhZFuVj7MxaRgpPGCeQReu4j8iTM2uuGVmovXHzYsVeWZnbnm9nZbwDeS9PVJkUyXp0gFyg6PLWR4Il0bOiOsk6rqtmE7Pe7o1E68Am30pdVNntitVHbmXE58k9hSkhYSsL_n-dX3HWNcqervoXGNuw6loSgKt0b3gZc5H9qvtQkpZ04jP2lGX91jmIj7goUyCZlysVdx7RBm_cOSCu_c_Lsf__4AJ56xMm-1CbyHLaweAH7__AQvoSyv6oPbqasnPz0Db1KNsvZaurYa39MCtazF8hKFwgzl-wvmcvgMsXGxbpngz_XN-shDRV29ptNFeF4pgpL4t4q_MZcD162bGjUa_khXJ4cX_ROue_GwA0t0yUPNEZhLjAnSJJrDHU3sblSiDqxaMkD5kbEeUTxGoGOQOg4xqSDJpI2SvKOSqNXsFPMCnwNDCXJhIqVjgIRo1WWRmzYJfhnHL5qQdCoIjOeqtx1zJhmG5Jlp76M1JdV6stECz7cfjOviToeffuo0VnmF22ZbRTWgo-N1jfih2d78_hsb2EvdIZWFcEcwc5yscJ38MT8Wk7KRRt2vx73B-dt2D6TvF0ZMD0H8Zie58PvfwG6LfZr |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWiToojwrphTwAlZgMXGcOFkghAaqVlMGJAapYhMc-0aMNM20zQwtf8CaD-Gj-BLuzaMDSHTXBVs7sZT4-D587XMAHhmX5C5FAm8eo9So-zL1oZaxYTZ0pqzLbS02YUaj5OAgfbcCP7q7MHyssrOJtaH2M8d75M9USpGwMRT_vzg6lqwaxdXVTkKjgcUQv55SylY933tF8_tYqZ3X48GubFUFpCO4zWWQY6gKjQW51iJHlSexL6xFzGOPnix54XRUhJp161Wg8yjCuI8uND6Mi75l8iUy-Ws6TAyvq6GR5wke-buGnzVOyfKrqL2k017Vo1xM8oEIGtikUv_pCJfR7V8F2drP7Vz_3_7QDdhoI2rxslkCN2EFy1uw_hvP4m2oRoumMDUV1eSwFSyrxKwQiymz836elGLgxygqTvQFFzMqwTvUwoqP5dnABz-_fT97T02ln52KqaU8RdjSU_dgod4K1hgW844mvum_Ax8u5as3YbWclXgXBBrq0zayeRjoCL311OJVQuGt4_ixB0E39ZlrqdhZEWSaLUmkGS4ZwSWr4ZLpHjw5f-eoISK58OntDiNZa5SqbAmQHjztULbs_vdoWxeP9hCu7o7f7Gf7e6PhPbimGOT1gZ9tWJ2fLPA-XHFf5pPq5EG9XAR8umz0_QJzTlDg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RQFU58ChFDY-yB27FSmyvX0dkiEBUASkBRb1Yu95ZNVJwEHZafgJnfiK_hFk_SFpRpKpXz3pl7cx65tud-QbgIEhDmUZIxit9tDjyjhUpl1t-YNjQDWWdFGWziaDXC4fD6HKuir_Mdm-uJKuaBsPSlBXtW6Xbc4VvhGwsk15AFhVEFn8HS9wk0hu83r9-gVzkgSrGVD-if7Hj1WUzr8_xu2uaxZt_XJGWnqe79v_fvA6rddTJjioz2YAFzD7CyhwX4SbkvWl1eTNm-eimbuqVs4lm07FhsP0xylisBshyA4aZOfDPmTnFZYJ9z-5jZT89PN736VGmJr_YWFAsz0SmSBxPnQtm-vCyoqFSr-Sf4Kp7MohPrbojg5XSVi0sW6LraI6awhIt0ZGhr7QQiNJXqMgL6pR72iXMRoGHzaXnod_B1A2U6-uOiNwtWMwmGX4GhgHJuPCEdG3uoRKKnignJB2mJsZqgd0oI0lrunLTNWOczIiWzYImtKBJuaAJb8HXl3duK7KON0fvNjpO6o2bJ05EgCsICGa24LDR6Uz899m2_234Pry_PO4m38565zvwwTFWUebI7MJicTfFPVhOfxaj_O5Lac_Pw23zow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulations+of+ultrathin+CdTe+solar+cells+with+a+ZnxCd1%E2%88%92xS+window+layer+and+a+Cu2O+hole+transport+layer&rft.jtitle=Journal+of+computational+electronics&rft.au=Amoupour%2C+Ebrahim&rft.au=Hassnzadeh%2C+Javad&rft.au=Abdolahzadeh+Ziabari%2C+Ali&rft.au=Azimi+Anaraki%2C+P&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1569-8025&rft.eissn=1572-8137&rft.volume=20&rft.issue=6&rft.spage=2501&rft.epage=2510&rft_id=info:doi/10.1007%2Fs10825-021-01779-4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8025&client=summon |