Fast and stable nonconvex constrained distributed optimization: the ELLADA algorithm

Distributed optimization using multiple computing agents in a localized and coordinated manner is a promising approach for solving large-scale optimization problems, e.g., those arising in model predictive control (MPC) of large-scale plants. However, a distributed optimization algorithm that is com...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization and engineering Ročník 23; číslo 1; s. 259 - 301
Hlavní autoři: Tang, Wentao, Daoutidis, Prodromos
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:1389-4420, 1573-2924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Distributed optimization using multiple computing agents in a localized and coordinated manner is a promising approach for solving large-scale optimization problems, e.g., those arising in model predictive control (MPC) of large-scale plants. However, a distributed optimization algorithm that is computationally efficient, globally convergent, amenable to nonconvex constraints remains an open problem. In this paper, we combine three important modifications to the classical alternating direction method of multipliers for distributed optimization. Specifically, (1) an extra-layer architecture is adopted to accommodate nonconvexity and handle inequality constraints, (2) equality-constrained nonlinear programming (NLP) problems are allowed to be solved approximately, and (3) a modified Anderson acceleration is employed for reducing the number of iterations. Theoretical convergence of the proposed algorithm, named ELLADA, is established and its numerical performance is demonstrated on a large-scale NLP benchmark problem. Its application to distributed nonlinear MPC is also described and illustrated through a benchmark process system.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1389-4420
1573-2924
DOI:10.1007/s11081-020-09585-w