Bicriteria scheduling of equal length jobs on uniform parallel machines

We study the bicriteria scheduling of equal length jobs on uniform parallel machines. By introducing a new scheduling model, called single-machine scheduling with generated completion times (shortly, GCT-scheduling), we show that the scheduling of equal length jobs on uniform parallel machines can b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 39; číslo 3; s. 637 - 661
Hlavní autoři: Zhao, Qiulan, Yuan, Jinjiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2020
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the bicriteria scheduling of equal length jobs on uniform parallel machines. By introducing a new scheduling model, called single-machine scheduling with generated completion times (shortly, GCT-scheduling), we show that the scheduling of equal length jobs on uniform parallel machines can be polynomially transformed into the single-machine GCT-scheduling with a special setting of generated completion times. In the GCT-scheduling, a sequence of completion times is given in advance and the job scheduled at the i -th position will be assigned the i -th completion time. We present a comprehensive study on the complexities of the bicriteria single-machine GCT-scheduling problems with respect to various regular criteria. We then turn these complexity results into the forms of bicriteria scheduling of equal length jobs on uniform (or identical) parallel machines. Our research generalizes the existing results on bicriteria scheduling of equal length jobs in the literature. Particularly, one of our results solves the open problem posed by Sarin and Prakash (J Comb Optim 8:227–240, 2004), which asks for minimizing the total weighted completion time subject to the optimality of minimizing the total number of tardy jobs on identical parallel machines, and we show that this problem is solvable in polynomial time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-019-00507-w