Stochastic variance reduced gradient with hyper-gradient for non-convex large-scale learning
Non-convex optimization, which can better capture the problem structure, has received considerable attention in the applications of machine learning, image/signal processing, statistics, etc. With faster convergence rate, there have been tremendous studies on developing stochastic variance reduced a...
Uložené v:
| Vydané v: | Applied intelligence (Dordrecht, Netherlands) Ročník 53; číslo 23; s. 28627 - 28641 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!