Strong Convergence of Forward–Reflected–Backward Splitting Methods for Solving Monotone Inclusions with Applications to Image Restoration and Optimal Control

In this paper, we propose and study several strongly convergent versions of the forward–reflected–backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real Hilbert space. Our proposed methods only require one forward evaluation of the single-valu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 94; číslo 3; s. 73
Hlavní autoři: Izuchukwu, Chinedu, Reich, Simeon, Shehu, Yekini, Taiwo, Adeolu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2023
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose and study several strongly convergent versions of the forward–reflected–backward splitting method of Malitsky and Tam for finding a zero of the sum of two monotone operators in a real Hilbert space. Our proposed methods only require one forward evaluation of the single-valued operator and one backward evaluation of the set-valued operator at each iteration; a feature that is absent in many other available strongly convergent splitting methods in the literature. We also develop inertial versions of our methods and strong convergence results are obtained for these methods when the set-valued operator is maximal monotone and the single-valued operator is Lipschitz continuous and monotone. Finally, we discuss some examples from image restorations and optimal control regarding the implementations of our methods in comparisons with known related methods in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-023-02132-6