A Constant–Factor Approximation Algorithm for Red–Blue Set Cover with Unit Disks

The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 85; číslo 1; s. 100 - 132
Hlavní autoři: Madireddy, Raghunath Reddy, Mudgal, Apurva
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2023
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main contribution of this paper is the first constant factor approximation algorithm for red-blue set cover problem with unit disks. To achieve this, we first give a polynomial time algorithm for line-separable red-blue set cover problem with unit disks. We next obtain a factor 2 approximation algorithm for strip-separable red-blue set cover problem with unit disks. Finally, we obtain a constant factor approximation algorithm for red-blue set cover problem with unit disks by combining our algorithm for the strip-separable problem with the results of Ambühl et al. [ 1 ]. Our methods involve a novel decomposition of the optimal solution to line-separable problem into blocks with special structure and extensions of the sweep-line technique of Erlebach and van Leeuwen [ 9 ].
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-022-01012-z